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Abstract: For die-casting, various approaches to finding the optimal control settings and
optimal mold by using a computational fluid dynamics (CFD) simulator have recently been
studied and applied. However, the optimal value obtained by using a conventional CFD simulator
does not consistently agree with experiment, owing to computational error. Accordingly, we
analyze the problem of optimization with a CFD simulator in order to develop an optimization
method that can consistently produce suitable results. To assess the effectiveness of the proposed
method, it was applied to the optimization of plunger speed in die-casting.

1. INTRODUCTION

Die-casting is used to manufacture a wide range of prod-
ucts. However, one problem with Die-casting for high-
speed injection molding is the formation of shrinkage cav-
ities. To avoid this, velocity control of the plunger has
proved highly effective; however, analyzing the behavior
of molten metal remains extremely difficult, and skilled
operators of die-casting equipment typically must decide
the velocity control input based on their experience and
instinct. Setting of the plunger speed is also complicated
by the fact that the behavior of molten metal cannot be
seen as it is injected at the sleeve and into the mold.

In recent years, numerical simulators for fluid analysis
based on computational fluid dynamics (CFD:P.Stefano
et al. [1954]) have been used to study the behavior of a
fluid around an object and its thermal hydraulics. CFD is
a technique based on the Navier-Stokes equations, as well
as on energy and mass conservation laws. Recently, for Die-
casting, various approaches to finding the optimal control
settings or optimal mold shape by using a CFD simulator
have been studied and applied. To obtain the optimal
velocity for injection molding to avoid the formation of
shrinkage cavities, optimization with CFD simulator is
effective.

However, in cases where the problem has many local so-
lutions, the most widely used general genetic algorithm
(GA:K.Ikeda et al. [2000]) is highly likely to find a local
solution, whereas finding the global optimal solution is
difficult. Specifically, the solution space is unstable due to
the effect of the loss of significant digits or underflow error,
leading to discrepancies between simulation and experi-
ment. Consequently, a simulation with low computational
cost does not always correspond to actual production of a
high-quality product.

The aim of this study is to design a solution search
algorithm that requires a smaller population to find a
solution that can be applied to the production of high-
quality products. Thus, we propose a multi-subcenters

solution search algorithm to compute the optimal plunger
velocity for die-casting. The effectiveness of the proposed
system is shown through simulation and experimental
results.

2. MULTI-SUBCENTERS SOLUTION SEARCH
ALGORITHM

In the case of optimization with few search points, the
distribution of search points is important for the derivation
of the global optimal solution. Conventionally, search
points are selected at random. However, the distribution
of such search points is uneven, as shown in Fig. 1, where
the shaded areas in the figure contain no search points.
Such areas without search points make it difficult to find
the global optimal solution with GA, leading to greater
computational cost.

0.05 0.15 0.25 0.35 0.45

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Velocity  [m/s]

Po
si

tio
n 

 [m
]

Fig. 1. Setting the distribution of search points by using
random generation.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

14085



Thus, the search points should be distributed uniformly.
On the other hand, in order to improve the convergence
performance, the search points should be densely located
in areas that are expected to contain the global optimal
solution. Therefore, to satisfy these criteria, we developed
the multi-subcenters solution search algorithm, which fea-
tures distribution control S.Martinez et al. [2007], con-
vergence control and cluster analysis capabilities, where
the distribution control algorithm is responsible for the
distribution of search points and the convergence control
algorithm regulates their density.

2.1 Distribution algorithm

Fig. 2 shows the basic concept of the distribution algo-
rithm. The search points are moved by repulsive forces,
which are represented as extending circles in the figure.

In this distribution algorithm, each search point is first
placed in a unique circle, which expands as the calculation
progresses, as described by Eq.(1), where R(λ) is the
radius of the circle, Radd is the expansion factor added
to the radius, λ is the number of cycles and mq is the
motion vector of the search point.

R(λ + 1) =
{ ∀R(λ) + Radd, if ∀mq = 0

∀R(λ), otherwise (1)

When a circle touches another circle or the boundary, re-
pulsive forces arise and spread the circles apart. The search
points are moved by the repulsive forces in accordance
with Eq.(2), Eq.(3) and Eq.(4), where Frep is the repulsive
force, q is a search point, p is another search point, Flim is
the repulsive forces reacting from the boundary, Bmin and
Bmax are respectively the upper and lower boundaries, qk

is the k-th column in vector q. Also, n is the number of
variables, Rp is the radius of vector q and Rq is the radius
of vector q.

mq =
{

(q − p) /F 2
rep, if ‖q − p‖ ≤ Rq + Rp

0, otherwise (2)
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Fig. 2. Basic concept of distribution algorithm.
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Fig. 3. Setting the distribution of search points by using
the developed distribution algorithm.

Frep = (‖q − p‖)−1
, (q �= p) (3)

mq =

{−Flim, if qk − R ≤ Bmin,k

Flim, if qk + R ≥ Bmax,k

0, otherwise
(1 ≤ k ≤ n)

(4)

The circles continue to expand until the movement of
the search points stops. When this occurs, the search
points should be distributed uniformly. Eq.(5) is applied
as an additional constraint on the movement of the search
points.

q(λ + 1) =

{
q(λ), ∀f(q(λ) +

∑
mq) /∈ L

q(λ) +
∑

mq, otherwise
(5)

Here, f is a constraint function defined by the user, and L
is the constraint. The distribution of search points which
results form using the distribution algorithm is shown in
Fig. 3, where the edges of the figure indicate the upper
and lower boundaries, and the inner solid diagonal line
indicates the additional constraint condition. In contrast
to Fig. 1, the search points are distributed uniformly. Thus,
the distribution algorithm can ensure sufficient separation
between the search points.

2.2 Convergence Algorithm

After the distribution algorithm, the convergence algo-
rithm is executed, in which the search points converge
in accordance with neighboring evaluated points. Fig. 4
shows the basic concept of the convergence algorithm,
where the crosses in the figure indicate evaluated points. If
there are evaluated points in the vicinity of a search point,
the latter is moved as shown in the figure. Here, Rmax is
the effective range of a neighboring evaluated point, which
is determined by the maximum value of R used in the
distribution algorithm.

Fig. 5 presents the basic concept of the convergence
algorithm.
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Fig. 4. Basic concept of the convergence algorithm.
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Fig. 5. Basic concept of the movement of search points.

The movement of search points is governed by Eq.(6)∼Eq.(11).
The search points of q search for nearby evaluated points
present inside the circle. The center of gravity coordinates
g of the selected evaluated points are calculated by using
Eq.(7). Furthermore, the center of gravity coordinates gu,
where the evaluated value of ci is considered as the load,
are calculated by using Eq.(8). Then, the motion vector
uj , which is given by Eq.(9) is calculated from Eqs.(7)
and (8), where bi is the position vector of the evaluated
point.

g =

(
n+1∑
i=1

bi

)
(n + 1)−1 (6)

gu =

(
n+1∑
i=1

bic
−1
i

)(
n+1∑
i=1

c−1
i

)−1

(7)

uj = gu − g (8)

The movement of a search point is decided by the motion
vector uj , as described by Eqs.(9), (10) and (11).

vq =

⎧⎪⎪⎨
⎪⎪⎩

0 (d = 0 or ∀f (q + vq) /∈ L)⎛
⎝ d∑

j=1

uj

⎞
⎠ d−1 otherwize (9)

qv = q + vq (10)

Here, qv is the moved search point, vq is the motion vector
of the search point and d is the number of combined
evaluated points as given by Eq.(6). If the number of
evaluated points a is less than n + 1, then d=0 is applied,
as shown in Eq.(6).

d =
{

aCn+1 (a ≥ n + 1)
0 (a < n + 1) (11)

These calculations are continued until the movement stops.
The shifted points become the analyzed points of the next
generation.

3. APPLICATION TO DIE-CASTING PROCESS

The effectiveness of the proposed method is tested through
application to die-casting. Then, the proposed method is
compared with GA. The effectiveness of the optimization
method of die-casting was proved by past study(K. Yano
et al. [2008]).

At actual casting plants, the multistep velocity can
be controlled and the velocity pattern, which has five
phases, is derived from past studies(K. Yano et al. [2008],
Y.Kuriyama et al. [2009]). The plunger velocity is ex-
pressed as shown in Fig. 6. In this study, the velocity is set
to v1,v2,v3, and the acceleration distance is set to x1,x2,
where x3 is filling position, which takes a constant value
of 0.367 m, because of the constraint of the plant.

0 t1 t2 t3

v1 v2

v3

x1 x2 x3

Ve
lo

ci
ty

[m
s]

Time [s]

Fig. 6. Die-casting simulation model using 5 variables.

In this study, the plunger tip is flat, and hot-work die
steel (SKD61) is used for the die, sleeve and plunger. An
aluminum alloy (ADC12) is assumed to be the molten
metal. Table 1 shows the fluid properties of ADC12.
We set the die temperature during pouring to the range
between 110 and 150◦C (steady state) and the molten
metal temperature in the melting furnace is set to between
660 and 680◦C. We used Yushiro AZ7150W as a parting
agent.

Fig. 7 shows an overview of the mesh setting, and Table 2
lists the parameters for the mesh setting.
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Table 1. Fluid properties of ADC12

Density of fluid [kg/ m3] 2700

Viscosity of fluid [Pa·s] 0.0030

Specific heat [J/(kg· K)] 1100

Thermal conductivity [W/(m· K)] 100.5

Initial temperature [K] 653.15

Mesh block

Plunger

Sleeve

Sprue core

Mold

Fig. 7. Mesh setting for CFD simulation.

Table 2. Mesh parameter.

Cell size Number of cell

X-direction 0.004 20

Y-direction 0.002∼0.006 132

Z-direction 0.0022∼0.0035 29

Total number of cell 76500

As seen in Fig. 7, the sleeve is symmetrical about the
X axis. Thus, the analysis area is set as only a one-
sided model to reduce the analysis time to only about
ten minutes. Table 2 shows the minimum settings to
perform calculations quickly and accurately, and the mesh
parameter is set so that a rough mesh is used around the
start point of the sleeve because the velocity is low and
the fluid is stable in the section. On the other hand, a fine
mesh is used around the end point of the sleeve because the
turbulence at the early stage of filling caused by collision
with the sprue core in the section.

The optimization problem was defined with a cost function
equivalent to the sum of the weighted quantity of air
entrainment and the weighted filling time, as shown in
Eq.(12),

minimize :J = waA(vi, xi) + wtt3

+ Kp + Ashut (12)

subject to : 0.02 ≤ vi ≤ 0.60
0.02 ≤ xi ≤ 0.36

0 ≤ ti ≤ 2.0
Ashut ≤ 3.0

(13)

Here, A is the function of air entrainment, t3 is the filling
time, xi is the acceleration distance, and wa = 1.5 and
wt = 1.0 are weighting factors. Kp is a penalty applied
each time the conditions shown in Eq.(13) are satisfied;
the penalty Kp = 108, which is large enough to avoid the
penalty conditions, will be added to satisfy the criteria.
Also, Ashut is the volume of trapped air, not including the

air surrounding the sleeve wall, plunger and molten metal,
when the plunger injection is switched from low speed to
high speed. Ashut is defined as shown in Fig. 8.

Sleeve volume Fluid volume Air shut cell volume

Simulation result

Shut air volume is analyzed every time step
Ashut is determined by maximum air volume

Air enclosure is distinguished 
by Fraction of fluid at sleeve section
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Fig. 8. Distinction of the shutting the air in the sleeve.

Three parameters are introduced to calculate the amount
of air entrapment.

• D1: Volume/opening column of fluid in the Y cross
section.

• D2: Threshold of air entrapment amount.
• D3: Calculation time step.

We used fluid analysis software to perform calculations
at each time interval specified by D3 to output the cell
column fraction and the fraction of fluid in order to
determine the filling per sleeve cross section. We calculated
the space volume at the back where the fraction of fluid
is less than D1 × 100% for the cross section, and we
defined the maximum space volume as the amount of air
entrapment Ashut m3. If plunger velocity input is designed
to minimize air entrapment by using this simulator, good
results can be expected for actual production experiments.

4. VALIDATION OF THE PROPOSED
OPTIMIZATION

The performance of the proposed optimization is validated
for the case of plunger velocity controlled by two variables.
The velocity is set as shown in Fig. 9

Fig. 10 shows the relationship of the cost function calcu-
lated using the CFD simulator for velocity and switching
position. In this figure, brown indicates the penalty area
and a lower value of the cost function signifies better
quality. In this case, the global optimal solution is 0.58
m/s, 0.22 m, However, are is many local solutions around
the global solution as shown in the solid circle in the figure.

The proposed optimization algorithm is validated by con-
ducting an experiment by using this solution space, and
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Fig. 9. Die-casting simulation model using 2 variables.
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Fig. 10. Relationship of air entrapment with plunger
velocity and switching position as calculated with
CFD simulator.

GA is used as a target for comparison. We seek to de-
termine which algorithm converges more rapidly to the
optimal global solution at 0.58 m/s, 0.22 m, where the
maximum number of generations is 1000 and the number
of trial is 10, The population size for one generation is 30.
Table 3 lists the parameters for the proposed algorithm,
and Table 4 lists the parameters for GA.

Table 3. Parameters for proposed method.

Parameter Numerics

Number of generation 60

Number of population 30

Additional radius, Radd 0.05

Force from limitation. Flim 0.1

Table 4. Parameters for GA.

Parameter Numeric

Number of generation 60

Number of population 30

Number of elite preservation 1

Crossover fraction 0.80

Mutation fraction 0.01

Fig. 11 shows the results of the convergence performance,
where the horizontal axis is the number of trials and the
vertical axis is the generation when convergence occurred.
The left side bar shows the result obtained by using GA,
and the right side bar is the result obtained by using the
proposed algorithm. In addition, the initial locations of the
search points are same. We can see from the figure that
in comparison with GA, the proposed algorithm performs
better, because the generation of convergence was lower.
However, the generation of convergence of the 2nd and
6th trials is 1000, this means that GA became trapped in
a local solution.
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Fig. 11. Convergence generation by using GA and pro-
posed method.

5. OPTIMIZATION OF THE PLUNGER VELOCITY
FOR 5 VARIABLE

The parameters for the proposed method are listed in
Table 3, and the parameters for GA, which we compare
with the proposed method, are listed in Table 4. The initial
population is the same for each algorithm, allowing us to
perform the calculations under the same conditions.

The results of calculations using the proposed method and
GA are shown in Table 5.

Table 5. Performance comparison of first opti-
mization results.

Parameter Proposed method GA

Cost function J 1.789 1.794

Air entrainment A 0.193 0.203

Finish time [s] 1.50 1.489

Convergence generation 39 39

6. EXPERIMENTAL RESULTS

We next performed experiments at an actual die-casting
plant, using the optimal velocity input calculated by the
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proposed method and GA. The optimized parameters
calculated by using the proposed method and GA are listed
in Table 6. A blister test was carried out to investigate the
quantity of entrapped air. This was done by heating the
specimen in a furnace, which increased the pressure of the
entrapped air and formed blisters on the surface. Fig. 12
shows the total area on the test piece surface by using the
each calculated optimal velocity where air bubbles formed
as a result of the blister test. Here, a solid line indicates
an air bubble area over 1×10−6 m2, and a broken line
indicates air bubble area less than 1×10−6 m2, and the
conventional input which is used in K. Yano et al. [2008]
is indicated as a comparison. From the figure, we can see
that the optimal velocity calculated by proposed method
resulted in less air bubble formation than that calculated
using GA. Moreover, the results in Table 6 show that the
proposed method performed better than the GA even if
the cost function was similar. The experimental results
demonstrate that optimization with the proposed method
corresponded accurately to good results in experiment.

Table 6. Experimental first result of optimiza-
tion.

Proposed method Velocity [m/s] Position [m]

i=1 0.41 0.242

i=2 0.34 0.340

i=3 0.59 0.367

Cost function 1.789

Total area of the air bubble : 0.779×10−6 [m2]

GA Velocity [m/s] Position [m]

i=1 0.44 0.279

i=2 0.22 0.290

i=3 0.60 0.367

Cost function : 1.794

Total area of the air bubble : 0.913 ×10−6 [m2]

7. CONCLUSION

The purpose of this study was to design a solution search
algorithm that requires smaller populations to find the op-
timal solution corresponding to the production of a high-
quality product. We proposed the multi-subcenters solu-
tion search algorithm for computing the optimal plunger
velocity for die-casting. Experimental results showed that
in comparison with GA, the proposed method could better
optimize the plunger velocity in die-casting resulting in
less air entrapment. Moreover, the results obtained by
using the proposed method were better than those ob-
tained using GA even if the cost function was similar. The
experimental results demonstrated that optimization with
the proposed method corresponded accurately to superior
production by die-casting.
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