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Abstract— Recently, the need to accelerate the operating cycle
of bottling machines while maintaining low operation cost has
arisen. However, conveying bottles at high speed without spilling
the liquids inside requires advanced techniques for vibration
suppression control. In this paper, we optimize the motion
curve for an intermittent conveyance bottling machine by using
computational fluid dynamics (CFD) simulation to decrease
residual vibration at the surface of the liquid. Additionally, we
propose a method for assigning magnitude relations to variables
and defining the curve by using variable transformations.

I. INTRODUCTION

Recently, high-speed operation cycles for bottling ma-
chines and reduction of production costs have come to be
required. A conventional approach to improving operation
cycles involves increasing the number of bottles filled simul-
taneously. However, such an approach requires increasing
the size of the bottling machine and leads to an increase
in production cost. An alternative approach to improving
operation cycles without increasing the cost is raising the
speed of bottle conveyance. Toward that end, advanced
techniques for suppressing vibration at the surface of liquids
are required for conveying bottles at high speed without
spilling the liquids.

In a previous study on vibration suppression control for
surfaces of liquids, Yoshida et al. have proposed a transfer
control method for a cylindrical container for liquids by
regarding it as a spherical pendulum model [1]. However,
since the shape of most actual bottles is not as simple as
a cylindrical container for liquids, applying that method to
an actual bottling machine is difficult. The development of
a fluid flow model for a bottle with a complex shape can be
aided by computational fluid dynamics (CFD). In this regard,
we have previously used a CFD simulator to optimize the
trajectory planning of a spoon that contains a liquid [2] and
to optimize the flow of molten metal in casting [3], [4].

In the present study, we aim to obtain an optimized motion
curve for an intermittent conveyance bottling machine by
using CFD simulation to decrease residual vibration at the
surface of the liquid. The motion curve is defined as a
spline curve that interpolates several points and is optimized
by using a real-coded genetic algorithm (RealGA) [5]. We
also propose a method for assigning magnitude relations
to variables for the coordinates of points by using variable
transformations. The effectiveness of the optimized motion
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Fig. 1. Intermittent conveyance bottling machine
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Fig. 2. Outline of the intermittent conveyance bottling machine

curve is demonstrated through experiments using an actual
bottling machine.

II. INTERMITTENT CONVEYANCE
BOTTLING MACHINE

An intermittent conveyance bottling machine and its out-
line are shown in Figs. 1 and 2 respectively, where “in-
termittent conveyance” indicates that the machine alternates
conveyance and idling stages. The machine conveys bottles
by rotating a wheel during the conveyance stage and caps
the bottles during the idling stage. In this case, the machine
fills three bottles with liquid simultaneously at every three
cycles.

The rolling radius of the bottles is R = 0.45[m]. Since the
wheel has 18 pockets, the rotation angle per cycle is θf =
20[deg] ≈ 0.349[rad]. A reference rotation angle θref(t) of
the wheel with respect to time is used as a reference input
to the machine, where the relationship between θref(t) and
the actual rotation angle θ(t) of the wheel is expressed as
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follows:

L[θ(t)] =
1

0.02s + 1
L[θref(t)]. (1)

Since the wheel can rotate only to the left at any time due
to a constraint of the machine, both θref(t) and θ(t) must be
weakly increasing functions.

When a bottle is conveyed according to θ(t), the relative
accelerations acting on the liquid at the center of the bottle
are the acceleration in the tangential direction aT(t)[m/s2],
the acceleration in the normal direction aN(t)[m/s2], and the
gravitational acceleration aG = 9.81[m/s2]. aT(t) and aN(t)
are expressed as follows:

aT(t) = R
d2θ(t)
dt2

= Rα(t) (2)

and

aN(t) = R

(
dθ(t)
dt

)2

= Rω(t)2, (3)

where ω(t) and α(t) are the angular velocity and the angular
acceleration of the wheel, respectively. Since the magnitudes
of steady aN(t) and aT(t) have a direct impact on the slope
of the surface of the liquid, the respective maxima of ω(t)
and |α(t)| that determine them must be considered in order
to obtain θ(t). Additionally, since sudden changes in aN(t)
and aT(t) strongly affect the behavior of the surface of the
liquid, the angular jerk j(t) must also be considered.

III. DEFINITION OF MOTION CURVE

A. Modified Sine Curve

A modified sine curve is one of the most commonly used
motion curves. In this paper, we regard it as a criteria curve
and use it for comparison with the optimized motion curve.
A dimensionless modified sine curve is expressed as follows:

θ̂M(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4(4+π) sin (4πt) + πt,

if 0 ≤ t < 1
8

− 9
4(4+π) sin

(
4
3πt + π

3

)
+ πt + 2,

if 1
8 ≤ t < 7

8

− 1
4(4+π) sin (4πt) + πt + 4,

if 7
8 ≤ t ≤ 1.

(4)

Both the first and second derivatives of θ̂M(t) are continuous.
A modified sine curve is characterized by relatively small
maximum values of these derivatives.

B. Definition of Motion Curve Based on the Spline Curve

A reference motion curve θref(t) is defined as a curve that
features considerable flexibility with only a small number of
variables from the perspective of optimization. Therefore,
we define θref(t) on the basis of a spline curve. However,
since θref(t) must be a weakly increasing function, we define
the angular velocity curve ωref(t), which is obtained as
the differential of θref(t) with respect to time, by using a
spline curve first and subsequently integrating ωref(t) and
normalizing the result.

A dimensionless velocity curve ω̂ref(t) is shown in Fig. 3.
ω̂ref(t) is defined from (8) and (9) as a natural cubic spline
curve [6] that interpolates the two endpoints (0, 0) and (1, 0),
as well as n-pass points:

Pi = (τi, wi), (5)

where

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 1 (6)

and

0 ≤ wi ≤ 1, (7)

for i = 1, 2, . . . , n.
Further,

ω̂ref(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω0(t), if 0 ≤ t ≤ τ1

ω1(t), if τ1 ≤ t ≤ τ2

...
ωn(t), if τn ≤ t ≤ 1

(8)

and

ωi(t) = Ai(t − τi)3 + Bi(t − τi)2 + Ci(t − τi) + Di, (9)

where

Ai =
1

6hi
(zi+1 − zi), (10)

Bi =
zi

2
, (11)

Ci = −hi

6
zi+1 − hi

3
zi +

1
hi

(wi+1 − wi), (12)

Di = wi, (13)

and

hi = τi+1 − τi, (14)

for i = 1, 2, . . . , n.
zi in the above equations is obtained by solving the

following equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 h1

h1 u2 h2 0
h2 u3 h3

. . .
. . .

. . .
hn−2 un−1 hn−10 hn−1 un

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0

z1

z2

...
zn

zn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
v1

v2

...
vn

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where

ui = 2(hi + hi−1) (16)
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and

vi =
6
hi

(wi+1 − wi) − 6
hi−1

(wi − wi−1). (17)

We obtain a dimensionless reference motion curve θ̂ref(t)
of the following equation by dividing the integral of ω̂ref(t)
by its definite integral from 0 to 1.

θ̂ref(t) =

∫
ω̂ref(t)dt

∫ 1

0

ω̂ref(t)dt

. (18)

Finally, when the rotation angle is θf and the motion time
is tf , the reference motion curve is generalized as follows:

θref(t) = θf · θ̂ref

(
t

tf

)
. (19)

C. Method for Transformation of Variables into Variables
with Magnitude Relations

The constraint conditions for the variables τi and wi which
define θref(t) are shown in (6) and (7), respectively. In
particular, the upper and lower limits of τi are changed by
the other variables. On the other hand, when a RealGA is
used as an optimization algorithm, the upper and lower limits
of τi must be defined as constants. One of the methods
for applying a RealGA to an optimization problem with
these constraint conditions is to sort internally each given
τi by meeting the constraint conditions. However, there is a
possibility that the performance of the RealGA degrades due
to the relationship between variables (genotype), in which
case their character (phenotype) becomes discontinuous. The
other method involves defining τi as a constant rather than
as a variable. In this case, a satisfactory optimization result
might not be obtained because of the limited flexibility of
θref(t).

Thus, in the following we utilize a simple variable trans-
formation to develop an equation of transformation which
converts variable xi on 0 ≤ xi ≤ 1 into τi and which satisfies
the constraint condition in (6). Assuming the precondition
that if xi is a uniformly distributed random number, τi is
also distributed uniformly in the region of (6).

1
0

1

τ1

τ2

D2

τ1 = 0

τ2 = 1

τ1 = τ2 

D1(τ2)

Fig. 4. Range of D2 on a two-dimensional surface

Step 1. The case of n = 2.: In (6), 0 ≤ τ1 ≤ τ2 ≤ 1. It
is geometrically expressed in Fig. 4 as the triangular region
D2 surrounded by the lines τ1 = 0, τ1 = τ2, and τ2 = 1,
where the area of D2 is 1/2.

The condition that τ1 and τ2 are distributed uniformly
in accordance with (6) is equivalent to the condition that
the point (τ1, τ2) is distributed uniformly in D2. When τ2

takes an arbitrary value, assuming that the range of τ1 is
D1(τ2), a uniform distribution of τ1 in D1(τ2) is realized
by multiplying x1 by τ2. As τ2 becomes smaller, D1(τ2)
becomes smaller, and the distribution density of τ1 becomes
higher in inverse proportion to τ2. Therefore, the distribution
of the point (τ1, τ2) can be made uniform in D2 by setting
the probability density function of τ2 to be proportional to
τ2. We use inverse transform sampling to obtain an equation
for transforming a variable into τ2 characterized by this
probability density function.

Inverse transform sampling is a method for generating a
random variable τ characterized by any probability density
function f(τ). This method involves a random variable x
that is uniformly distributed on [0, 1], and uses the following
equation:

τ = F−1(x), (20)

where F−1(x) is the inverse function of F (τ) and F (τ) is
the integral of f(τ) or the cumulative distribution function
of τ .

Since the probability density function of τ2 is proportional
to τ2, and since the definite integral of f2(τ2) on [0, 1] must
be 1, then f2(τ2) is f2(τ2) = 2τ2. Thus, τ1 and τ2 are
obtained as follows by applying inverse transform sampling
to f2(τ2) by using x2:⎧⎨

⎩
τ1 = x1τ2 = x1x

1
2
2

τ2 = x
1
2
2 .

(21)

Step 2. The case of n = 3.: In (6), 0 ≤ τ1 ≤ τ2 ≤ τ3 ≤
1. As in the case of step 1, it is geometrically expressed,
as shown in Fig. 5, as a tetrahedron-shaped region D3
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Fig. 5. Range of D3 in three-dimensional space

surrounded by the planes τ1 = 0, τ1 = τ2, τ2 = τ3 and
τ3 = 1, where the volume of D3 is 1/6.

When τ3 takes an arbitrary value, assuming that the range
of (τ1, τ2) is D2(τ3), a uniform distribution of (τ1, τ2) in
D2(τ3) is realized by multiplying the right-hand sides of
(21) by τ3. Since D2(τ3) is a two-dimensional shape, the
distribution density of D2(τ3) is inversely proportional to the
square of τ3. Therefore, by assuming f3(τ3) = 3τ2

3 (where∫ 1

0
f3(τ3) = 1) in order to set the probability density function

of τ3 to be proportional to the square of τ3, the distribution
of (τ1, τ2, τ3) can be made uniform in D3. Thus, τ1, τ2, and
τ3 are obtained as follows by applying the inverse transform
sampling to f3(τ3) by using x3.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

τ1 = x1x
1
2
2 τ3 = x1x

1
2
2 x

1
3
3

τ2 = x
1
2
2 τ3 = x

1
2
2 x

1
3
3

τ3 = x
1
3
3 .

(22)

Step 3. The case of n ∈ N.: As in steps 1 and 2, (6)
is geometrically expressed as a n-simplex-shaped region Dn

surrounded by n + 1 hyperplanes τ1 = 0, τi = τi+1 (i =
1, . . . , n−1), and τn = 1 in n-dimensional space, where the
hypervolume of Dn is

Hn =
1
n!

. (23)

The probability density function of τn is fn(τn) = nτn−1
n

by the same reasoning as in steps 1 and 2. Thus, the general
equation of the variable transformation for obtaining τi is
expressed as follows:

τi =
n∏

k=i

x
1
k

k

=

⎧⎨
⎩

x
1
i
i τi+1, if i = 1, 2, . . . , n − 1

x
1
i
i , if i = n.

(24)

This result is summarized in the following theorem.
Theorem 1: If a random number x = (x1, x2, . . . , xn)

which is uniformly distributed on [0, 1]n is transformed into

a random number τ = (τ1, τ2, . . . , τn) in accordance with
(24), then τ is also distributed uniformly in the region of
(6).

Proof: The probability density function fτ of τ is
expressed as the following equation by applying the variable
transformation formula for probability density functions [7]:

fτ (τ ) =
∣∣J(x → τ )

∣∣fx

(
x(τ )

)
. (25)

Here, fx is the probability density function of x and
J(x → τ ) is the Jacobian matrix of the transformation of
variable x into τ . Since x is expressed as

xi =

⎧⎪⎨
⎪⎩

τ i
i

τ i
i+1

, if i = 1, 2, . . . , n − 1

τ i
i , if i = n

(26)

by using (24), the Jacobian determinant becomes

∣∣J(x → τ )
∣∣ =

∣∣∣∣∣∣∣∣∣

∂x1
∂τ1

∂x1
∂τ2

· · · ∂x1
∂τn

∂x2
∂τ1

∂x2
∂τ2

· · · ∂x2
∂τn

...
...

. . .
...

∂xn

∂τ1

∂xn

∂τ2
· · · ∂xn

∂τn

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1
τ2

− τ1
τ2
2

2τ2
τ2
3

− 2τ2
2

τ3
3

0
.. .

. . .0 (n−1)τn−2
n−1

τn−1
n

− (n−1)τn−1
n−1

τn−2
n

nτn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
=

1
τ2

× 2τ2

τ2
3

× · · · × (n − 1)τn−2
n−1

τn−1
n

× nτn−1
n

= n!. (27)

Additionally, from (24), it is apparent that (6) is correct. By
substituting (27) into (25), fτ (τ ) becomes

fτ (τ ) =
{

n!, if 0 ≤ τ1 ≤ · · · ≤ τn ≤ 1
0, otherwise. (28)

Thus, the theorem is true. Moreover, since the hypervolume
of the region 0 ≤ τ1 ≤ · · · ≤ τn ≤ 1 is Hn = 1/n!, the
entire probability is 1.

Finally, θ̂ref(t) is expressed as θ̂ref(t;x,w) by using x =
(x1, . . . , xn) and w = (w1, . . . , wn), which define θ̂ref(t).

IV. FORMULATION OF OPTIMIZATION PROBLEM

An overview of the mesh setting for the CFD simulation
is shown in Fig. 6, and the parameters of the mesh are listed
in Table I. As seen in Fig. 6, the analytical region covers
only the upper part of the bottle since the fluidity of the
lower part is low. The fluid used in this problem is water at
20◦C, whose properties are listed in Table II. The volume
of the fluid is set to an amount that lets the surface of the
liquid reach 0.02[m] from the top of the bottle. The finish
time of the simulation is 1.0[s], and the time interval for data
acquisition is 0.001[s]. Conveyance of the bottle is simulated
by applying virtual angular velocities to the bottle, including
gravitational acceleration of −9.81[m/s2] in the direction of
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Fig. 6. Mesh settings for CFD simulation and rendered image

TABLE I

MESH PARAMETERS

Block Cell size [m] Number of cells
X axis 0.001 54
Y axis 0.001 54
Z axis 0.001–0.002 52
Total number of cells 151 632

the Y axis. Based on the above settings, the computation
time per simulation is about 30 min.

Let the number of points that define a motion curve θref(t)
be n = 4 in order to increase the flexibility of θref(t). The
rotation angle is θf ≈ 0.349[rad], and the motion time is
tf = 0.45[s]. Thus, the actual angular displacement θ(t) of
the wheel is determined from θ(t;x,w) by using (1), (8)-
(19), and (24). The first-, second- and third-order differen-
tials of θ(t;x,w) are ω(t;x,w), α(t;x,w) and j(t;x,w),
respectively. We set the following constraint conditions on
these functions:⎧⎪⎨

⎪⎩
min

t
ω(t;x,w) ≥ 0[rad/s]

max
t

|α(t;x,w)| ≤ 12[rad/s2]

max
t

|j(t;x,w)| ≤ 300[rad/s3].
(29)

In the optimization, the motion curve is evaluated by
considering the maximum level Dmax of the liquid 0.6[s]
after starting the conveyance. dmax(t) is given by

dmax(t) = max
X,Y

d(X,Y,Z, t), (30)

and Dmax is given by,

Dmax = max
0.6≤t≤1

dmax(t). (31)

TABLE II

PROPERTIES OF WATER AT 20◦C

Density 1000[kg/m3]
Viscosity 0.001[Pa · s]

Surface tension 0.73[N/m]
Contact angle 90[deg]

TABLE III

PARAMETERS FOR REALGA

Maximum number of individuals 500
Population size 20

Number of elite individuals 19
Selection method Roulette selection
Crossover method BLX-α (α = 0.2)

Here, d(X,Y,Z, t) is the level of the liquid in each cell
at position (X,Y,Z) and time t. d(X,Y,Z, t) is always
constant regardless of Z if X , Y , and t are constant.

A RealGA is used for the optimization. The parameters
for the RealGA are listed in Table III.

Finally, the optimization problem is defined by the follow-
ing equation:

Minimize Dmax(x,w)
subject to x ∈ [0, 1]n

w ∈ [0, 1]n

min
t

ω(t;x,w) ≥ 0

max
t

|α(t;x,w)| ≤ 12

max
t

|j(t;x,w)| ≤ 300.

(32)

This is a problem that entails obtaining a motion curve that
minimizes residual vibration at the surface of a liquid after
its conveyance.

V. RESULTS

A. Optimization Results

The computation time for the optimization was about 250
h when using a PC with an Intel Core 2 Quad processor
(2.83 GHz).

The optimized solution is listed in Table IV, and the
waveforms of the optimized motion curve and the modified
sine curve are shown in Fig. 7 for comparison. Furthermore,
the waveforms of each dmax(t) as calculated with (30) are
shown in Fig. 8. The values of these curves as calculated
from (31) are 0.0410[m] and 0.0452[m], respectively.

Fig. 7 shows that all of the maximum values of ω(t),
|α(t)|, and |j(t)| of the optimized motion curve are slightly
greater than those of the modified sine curve. Therefore, as
shown in Fig. 8, the amplitude of vibration of the liquid in
the case of the optimized motion curve during conveyance
until t = 0.45[s] is larger than that of the modified sine
curve. However, the optimized motion curve exhibits almost
no residual vibration after conveyance (t > 0.45[s]) and thus
constitutes a positive and favorable result.

TABLE IV

OPTIMIZED SOLUTION

i 1 2 3 4
xi 0.6174 0.5629 0.1854 0.1632
(τi) (0.1679) (0.2719) (0.3624) (0.6356)
wi 0.3698 0.5798 0.8152 0.5269
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jerk of the optimized motion curve and the modified sine curve

B. Experimental Results

We performed experiments by using an actual intermit-
tent conveyance bottling machine. Photographs showing the
behavior of liquid in bottles after they had been conveyed
following the optimized motion curve and modified sine
curve are shown in Fig. 9. The experimental results show
that conveyance with the optimized motion curve can reduce
residual vibration at the surface of a liquid, in accordance
with the simulation results.

VI. CONCLUSIONS

An optimized motion curve which minimizes residual
vibration at the surface of a liquid in a bottle after it has been
conveyed by an intermittent conveyance bottling machine has
been obtained by using a CFD simulator and a RealGA.
Both the simulation results and the experimentation results
have shown that the optimized motion curve can reduce

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 8. Waveform of the maximum level of the liquid for the optimized
motion curve and the modified sine curve

residual vibration at the surface of the liquid. Additionally,
variable transformations that transform independent variables
into variables with magnitude relations have been proposed
and have been proved mathematically.
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