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Fig.2.1.1  Periodic function 

Fig.2.1.2  Cosine and sine functions having the period 2

2. Fourier Series, Fourier Integrals and Fourier Transforms 
 

The Fourier series are used for the analysis of the periodic phenomena, which often appear in physics and 
engineering. The Fourier integrals and Fourier transforms extend the ideas and techniques of the Fourier series 
to the non-periodic phenomenon. The Fourier transform is commonly used to transform a problem from the 
"time domain" into the "frequency domain" in which the amplitude and the phase are given as a function of 
frequency. 
 
2.1 Fourier Series 
 
2.1.1 Periodic Functions 

If a function ( )f x is defined for all real x and if there is some positive number p such that 

 ( ) ( )f x p f x   for all x              (2.1.1) 

it is called periodic. The number p is called a period of ( )f x . 

 
From Eq.(2.1.1), for any integer n , 
 ( ) ( )f x np f x   for all x              (2.1.2) 

Hence 2 , 3 , 4 ,p p p   are also period of ( )f x . 

 
If a periodic function ( )f x has a smallest period ( 0)p  , 

this is often called the primitive period of ( )f x . 

 
If ( )f x and ( )g x have period p , then the function 

( ) ( ) ( )h x af x bg x    ( ,a b  constant)            (2.1.3) 

also has the period p . 

 
 
2.1.2 Fourier Series of a Periodic Function with Period 2  

Let us assume that ( )f x is a periodic function of period 2 that can be represented by a trigonometric series. 

Fourier series 

 0
1
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n
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Fourier coefficients (given by the Euler formulas) 
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            (2.1.5) 

It can be obtained from the orthogonality of trigonometric system on an interval of length 2 in Sec. 1.4. 
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cos sin 0nx mx dx

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


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
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  for any integers n and m. 
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Fig.2.1.3  Left- and 
right-hand limits 

Even function Odd function 

Fig.2.1.4  Even function and odd function

If a periodic function ( )f x with period 2 is piecewise continuous in the 

interval x    and has a left-hand derivative and right-hand derivative at 
each point of that interval, then the Fourier series Eq.(2.1.4) of ( )f x is 

convergent. Its sum is ( )f x , except at a point 0x at which ( )f x is discontinuous 

and the sum of the series is the average of the left- and right-hand limits of 

( )f x at 0x . 

 
Parseval’s Theorem 

If a function ( )f x is square-integrable on an interval x    , then 

 2 2 2 2
0

1

1 1
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2 2n n
n

a a b f x dx
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


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                (2.1.7) 

 
2.1.3 Fourier Series of a Function of Any Period 2p L  

If a function ( )f x has period 2p L , then 

Fourier series 
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Fourier coefficients 
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            (2.1.9) 

(∵Let x v
L


 in Eq.(2.1.4) and Eq.(2.1.5)) 

 
 
2.1.4 Even and Odd Functions 

A function ( )g x is even if ( ) ( )g x g x  for all x . 

A function ( )h x is odd if ( ) ( )h x h x   for all x . 

 

If ( )g x is an even function, then
0

( ) 2 ( )
L L

L
g x dx g x dx


  . 

If ( )h x is an odd function, then ( ) 0
L

L
h x dx


 . 

 
The product of an even function and an odd function is odd. 
The product of an even function and an even function, or that of an odd function and an odd function is even. 

 
Fourier Series of an Even Function of Period 2p L  

0
1

( ) cosn
n

n
f x a a x

L





   ( ( )f x is even function) Fourier cosine series      (2.1.10) 

with coefficients 

0 0 0

1 2
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Fourier Series of an Odd Function of Period 2p L  

1

( ) sinn
n

n
f x b x

L





   ( ( )f x is odd function) Fourier sine series        (2.1.12) 

with coefficients 
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2.1.5 Complex Fourier Series 
The Fourier series of a periodic function ( )f x of period 2  

 0
1

( ) cos sinn n
n

f x a a nx b nx




               (2.1.14) 

0
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  
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           (2.1.15) 

can be written in complex form. 
Using the Euler formula, we get 

cos sin , cos sininx inxe nx i nx e nx i nx               (2.1.16) 
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With this, Eq.(2.1.14) becomes 
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If we introduce the notations, 
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we obtain 
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2.1.6 Complex Fourier Series of Function ( )f x of Period 2p L  
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Parseval’s Theorem 

If a function ( )f x is square-integrable on an interval L x L   , then 

2 21
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Summary 

Fourier series of a periodic function ( )f x of period 2p L  
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Fourier coefficients 
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Fig.2.1.5  Partial sums of the Fourier series 
of ( )f x  
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Example 
Find the Fourier series of the following periodic function of period 2p  , and graph their partial sums. 

 
0 if 1 0

( )
if 0 1

x
f x

x x

  
   

             (2.1.25) 

 
Solution 

Since the period 2 2p L  , we obtain by the Euler formulas 
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Hence, the Fourier series of ( )f x is 

 
2

1 2 1 1 1 1 1
( ) cos cos3 cos5 sin sin 2 sin 3

4 9 25 2 3
f x x x x x x x     


              
   

  (2.1.27) 

Figure 2.1.5 shows the partial sum 

 
2 2

1 1

1 1 ( 1) 1 1 ( 1)
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This figure shows oscillations near the points of discontinuity of ( )f x . We might expect that these oscillations 

disappear as n approaches infinity, but this is not true; with increasing n, they are shifted closer to the points of 
discontinuity. This unexpected behavior is known as the Gibbs phenomenon. 
 

Next, we obtain the complex Fourier coefficients 

 

 
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    (2.1.29) 

Thus, we should often separately calculate only 0c . 
 
 
Problem 

Find the Fourier series of the following functions, which are assumed to be periodic of the period 2p  , and 

graph their partial sums. 

(1) ( ) ( 1 1)f x x x           (2) 2( ) ( 1 1)f x x x     

(3) ( ) ( 1 1)f x x x           (4) ( ) ( 1 1)xf x e x     

(5) ( ) sinf x x         (6) ( ) 4cos cos 4f x x x    

(7) 
0 if 1 0

( )
1 if 0 1

x
f x

x

  
   

       (8) 
1 if 1 0

( )
if 0 1

x
f x

x x

  
   

 

(9) 
0 if 1 1 2

( )
1 if 1 2 1

x
f x

x

   
    

      (10)
1 if 1 0

( )
1 if 0 1

x x
f x

x x

   
    

 

(11)
0 if 1 0

( )
sin if 0 1

x
f x

x x
  

   
      (12) ( ) sin ( 1 1)f x x x     
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2.2 Fourier Integrals and Fourier Transforms 
 

In the previous section, we found that a periodic function can be represented by a Fourier series. We want to 
extend the method of Fourier series to nonperiodic functions. We see what happens to the periodic function of 
period 2p L if we let L  . 

 
2.2.1 Fourier Integral 

We consider any periodic function ( )Lf x of period 2p L that can be represented by a Fourier series 

 0
1

1

( ) cos sin

1 1
( ) cos ( ) cos sin ( )sin

2

L n n n n
n

L L L

L n L n n L nL L L
n

f x a a x b x

f v dv x f v v dv x f v v dv
L L

 

   







  


  

     



  
     (2.2.1) 

where n n L   

We now set 

1

( 1)
n n

n n

L L L

    


                 (2.2.2) 

Then 1 L   , and we may write Eq.(2.2.1) in the form 

1

1 1
( ) ( ) (cos ) ( )cos (sin ) ( )sin

2

L L L

L L n L n n L nL L L
n

f x f v dv x f v v dv x f v v dv
L

     




  


           (2.2.3) 

This representation is valid for any fixed L , arbitrarily large, but finite. 
 

We now let L  and assume that the resulting nonperiodic function ( ) lim ( )L
L

f x f x


 is absolutely 

integrable on the x-axis; that is, ( )f x dx


 exists and it is finite. 

Then L  , and the value of the first term on the right side of Eq.(2.2.3) approaches zero. 
Also 0L   and it seems plausible that infinite series in Eq.(2.2.3) becomes an integral from 0  to 

   , which represents ( )f x , 

0

1
( ) cos ( ) cos sin ( )sinf x x f v v dv x f v v dv d    


  

 

                (2.2.4) 

 
If we introduce the notations 

1 1
( ) ( ) cos , ( ) ( )sinA f v v dv B f v v dv   

 
 

 
             (2.2.5) 

we can write this in the form 

 
0

( ) ( ) cos ( )sinf x A x B x d    


              (2.2.6) 

This is a representation of ( )f x by a Fourier integral. 

This naive approach merely suggests the representation Eq.(2.2.6) but by no means establishes it. 
 
 
Sufficient Conditions for the Fourier Integral 

If ( )f x is piecewise continuous in every finite interval and has a right-hand derivative and a left-hand 

derivative at every point and if it is absolutely integrable on the x-axis, then ( )f x can be represented by a Fourier 

integral Eq.(2.2.6). 
At a point where ( )f x is discontinuous the value of the Fourier integral equals the average of the left- and 

right-hand limits of ( )f x at that point. 

 
 
Complex Fourier Integral 

Similarly, we can derive the following complex Fourier integral from the complex Fourier series. 

( )1
( ) ( )

2
i x vf x f v e dvd 


  

 
               (2.2.7) 
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(a)  Fourier series 

(b)  Large T  

(c) T   (Fourier transform) 
Fig.2.2.1  Fourier series and Fourier transform (period p T ) 

2.2.2 Fourier Transform 
Writing the exponential function in Eq.(2.2.7) as a product of exponential functions, we have 

1 1
( ) ( )

2 2
i v i xf x f v e dv e d  

 

  

 

 
  

 
             (2.2.8) 

The expression in brackets is a function of  , is denoted by ˆ ( )f  , and is called the Fourier transform of 

( )f x ; writing v x , we have 

Fourier transform 

  1ˆ( ) ( ) ( )
2

i xf f x f x e dx


 


  F             (2.2.9) 

Inverse Fourier transform 

1 1ˆ ˆ( ) ( ) ( )
2

i xf x f f e d  





    F            (2.2.10) 

 
Sufficient Conditions for Existence of the Fourier Transform 

If ( )f x is piecewise continuous on every finite interval and it is absolutely integrable on the x-axis, then the 

Fourier transform of a function ( )f x exists. 

 
Summary 

Fourier integral of a function ( )f x  

  
0

1
( ) ( ) cos ( )sin ( )

2
i xf x A x B x d C e d      



 


             (2.2.11) 

where 

 

1 1
( ) ( )cos , ( ) ( )sin

1
( ) ( )

2
i x

A f x x dx B f x x dx

C f x e dx

   
 




 

 

 



 



 


          (2.2.12) 

Fourier transform 

   1ˆ( ) ( ) ( )
2

i xf f x f x e dx


 


  F             (2.2.13) 

Inverse Fourier transform 

 1 1ˆ ˆ( ) ( ) ( )
2

i xf x f f e d  





    F            (2.2.14) 
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Table 2.2.1  Formulas of the Fourier transform 
( a and b are constants) 

 

(1) Linearity ( ) ( )af x bg x  ˆ ˆ( ) ( )af bg   

(2) Derivative of function ( ) ( )nf x    ˆ ( )
n

i f   

(3) Shifting on the -axis ( )iaxe f x  ˆ ( )f a   

(4) Shifting on the x -axis ( )f x a  ˆ ( )i ae f   

(5) Differentiation of transform ( )x f x  ˆ ( )i f   

(6) Scaling ( 0)a   ( )f ax  
1 ˆ ( )

| |
f

a a


 

(7) Convolution 
( )( ) ( ) ( )

( ) ( )

f g x f p g x p dp

f x p g p dp









  

 




 ˆ ˆ2 ( ) ( )f g    

(8) Duality ˆ ( )f x  ( )f   

 
2.2.3 Formulas of the Fourier Transform 
(1) Linearity ( a and b are constants) 

   

   

1
( ) ( ) ( ) ( )

2
1 1

( ) ( )
2 2

( ) ( )

i x

i x i x

af x bg x af x bg x e dx

a f x e dx b g x e dx

a f x b g x



 



 

 



  

 

  

 

 



 

F

F F

         (2.2.15) 

(2) Fourier transform of the derivative of a function 
Let ( )f x be continuous on the x-axis and ( ) 0f x  as x  . 

Furthermore, let ( )f x be absolutely integrable on the x-axis. Then 

   
 

1 1
( ) ( ) ( ) ( ) ( )

2 2
1

0 ( ) ( )
2

i x i x i x

i x

f x f x e dx f x e i f x e dx

i f x e dx i f x

  




 

 


   

 

 



       

 

 



F

= F
        (2.2.16) 

Two successive applications of the above equation give 

       2 2( ) ( ) ( ) ( ) ( )f x i f x i f x f x      F F F F           (2.2.17) 

 
(3) Shifting on the -axis  

1 1ˆ ˆ( ) ( )
2

i xf a f a e d  





     F  

Let a v   , then ,v a d dv    . We obtain 

1 ( )

1

1 1ˆ ˆ ˆ( ) ( ) ( )
2 2

ˆ ( ) ( )

i v a x iax ivx

iax iax

f a f v e dv e f v e dv

e f e f x


 



  

 



    

   

 F

F
         (2.2.18) 

(4) Shifting on the x-axis 

  1
( ) ( )

2
i xf x a f x a e dx



 


  F  

Let x a v  , then ,x v a dx dv   . We obtain 

 

 

( )1 1
( ) ( ) ( )

2 2

( )

i v a ia i v

ia

f x a f v e dv e f v e dv

e f x

  



 

    

 



  



 F

F

         (2.2.19) 
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(5) Differentiation of the Fourier transform 

 

ˆ ( ) 1 1 1ˆ ( ) ( ) ( ) ( )
2 2 2

( )

i x
i x i xdf d de

f f x e dx f x dx ix f x e dx
d d d

i x f x


 

    

   

  

       
 

 

  
F

 

Thus, 

  ˆ( ) ( )x f x i f F               (2.2.20) 

 
(6) Scaling on the x-axis 

If 0a  then 

  1
( ) ( )

2
i xf ax f ax e dx



 


 F  

Let ax v , we get 

  1 1 1 ˆ( ) ( ) ( )
2

v
i

af ax f v e dv f
a a a

 





 F  

We can similarly derive it if 0a  . Hence, 

  1 ˆ( ) ( )
| |

f ax f
a a


F              (2.2.21) 

(7) Convolution 

  1
( )( ) ( ) ( )

2
i xf g x f p g x p e dpdx



  

 
   F            (2.2.22) 

Let x p q  , we get 

 

   

( )1
( )( ) ( ) ( )

2
1

( ) ( ) 2 ( ) ( )
2

i p q

i p i q

f g x f p g q e dqdp

f p e dp g q e dq f x g x



 






   

 

  

 

 

 

 

 

F

F F
        (2.2.23) 

Also, 

  1 1ˆ ˆˆ ˆ( ) ( ) ( * )( ) ( ) ( )
2 2

f x g x f g f v g dv  
 




  F           (2.2.24) 

Note: In general,      ( ) ( ) ( ) ( )f x g x f x g xF F F  

 
(8) Duality 

Let x   and x  simultaneously in the inverse Fourier transform. We get 
1 ˆ ˆ( ) ( ) ( )
2

i xf f x e dx f x


 


      F            (2.2.25) 

 
Example 

Find the real Fourier integral and the Fourier transform of the following function. 

 
if 0 1

( )
0 otherwise

x x
f x

 
 


             (2.2.26) 

Solution 
Substituting Eq.(2.2.26) into Eq.(2.2.5), we obtain 

 

1

20

1

20

1 1 1 cos sin
( ) ( )cos cos

1 1 sin cos
( ) ( )sin sin

A f x x dx x x dx

B f x x dx x x dx

    
  

    
  









  
  


  

 

 
         (2.2.27) 

Hence, we obtain the Fourier integral 

 
2 20

1 cos sin sin cos
( ) cos sinf x x x d

       
 

                  (2.2.28) 

Substituting Eq.(2.2.26) into Eq.(2.2.9), we obtain the Fourier transform 

 
1

20

1 1 1 (1 )ˆ ( ) ( )
2 2 2

i
i x i x e i

f f x e dx x e dx


  
  

  



  
             (2.2.29) 



  Mathematics IV   2-9 

Fig.2.2.3  Integral ( )aS x and ( )f x  Fig.2.2.2  Amplitude spectrums of ( )f x

–20 –10 0 10 20

–0.1

0.0

0.1

0.2



A()

B()

|f ~()|

–2 –1 0 1 2
0

1

f (x)

x

S4

S16
S32

f (x)

Fig.2.2.5  Square wave and its Fourier transform

Fig.2.2.4  Gaussian function and its Fourier transform

Figure 2.2.2 shows ( )A  , ( )B  and ˆ( ) 2 ( )f f   , which is a frequency domain representation of the 

function ( )f x . Figure 2.2.3 shows the integral 

 
2 20

1 cos sin sin cos
( ) cos sin

a

aS x x x d
       
 

                 (2.2.30) 

which approximates the integral in Eq.(2.2.28). Although ( )aS x approaches ( )f x as a increases, the oscillation 

known as Gibbs phenomenon occurs near the discontinuity point of ( )f x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.4 Fourier Transforms of Some Functions 
 
・Gaussian function 

2

( ) axf x e   ( 0)a   

We use the definition of the Fourier transform. 

 
2 2 2

2

2 2 2 241 1 1
( )

2 2 2

i i i
ax ax

ax i x a a aaf x e dx e dx e e dx
  



  

     
                  

  
    F  

We denote the integral by I and we use 2ax i a v  as a new variable of integration. Then dx dv a , 

so that 
2

22 1
i

ax
vaI e dx e dv

a

 
     

 
    

We square the integral, convert it to a double integral, and use polar coordinates 2 2r u v  and . Since 
du dv r dr d , we get 

2 2 2 2

2 2

2 ( )

2

0 0
0

1 1

1 2 1

2

u v u v

r r

I e du e dv e du dv
a a

e r dr d e
a a a

  

      

   


  

 

      

   

 
 

Hence I a . 

From this and the first equation in this solution, 
2 2

2 2
4 41 1 1

2 2 2
ax ax i x a ae e dx e e

a a

 
 

 

   


      F           (2.2.31) 

The Fourier transform of the Gaussian function is a Gaussian function. 
 
 
・Square wave 

1
if

( ) 2
0 if

a

x a
f x a

x a

  
 

 (2.2.32) 

Area:  ( ) 1af x dx



  
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Fig.2.2.6  Dirac delta function ( )x and its Fourier transform

Fig.2.2.7  ( )x a  and its Fourier transform

Fig.2.2.8  Constant and its Fourier transform

Fig.2.2.9  Trigonometric function and its Fourier transform

Taking the Fourier transform, we get 

 

 

 

1 1 1 1 1 1
( ) ( )

2 22 2 2

1 1 1

22
1 1 1 1 sin

2 sin
22 2

a
ai x i x i x

a a a
a

i a i a

f x f x e dx e dx e
a a i

e e
a i

a
i a

a i a

  

 

  




  

   

 




      


 


  

 F

        (2.2.33) 

 
 
・Dirac delta function (unit impulse function) 

0

if 0
lim ( ) ( )

0 if 0a
a

x
f x x

x




 
   

 (2.2.34) 

Properties: ( ) 1x dx



  

( ) ( ) ( )f x x a dx f a



   (2.2.35) 

( ) ( ) (0)f x x dx f



  

 
Taking the Fourier transform, we get 

 

0

1
( ) ( )

2
1 1

2 2

i x

i

x x e dx

e





 


 

 







 

F

 (2.2.36) 

 
Using the formula of shifting on the x-axis, we get 

   

 

( ) ( )

1

2
1

cos sin
2

i a

ia

x a e x

e

a i a





 



 






 



 

F F

 (2.2.37) 

 
From the duality, we obtain 

 1 2 ( ) 2 ( )     F  (2.2.38) 

and 

2 ( ) 2 ( )iaxe a a          F  

2 ( )iaxe a     F  (2.2.39) 

 
 
・Trigonometric function 

 0 0

0 0( ) cos sin

1
( ) ( )

2
i x i x

f x a x b x

a ib e a ib e 

 



 

   
 

where 0 is constant. 

Taking the Fourier transform, we get 

   0 0 0 0

2
cos sin ( ) ( ) ( ) ( )

2
a x b x a ib a ib

             F          (2.2.40) 
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Fig.2.2.11  Property of impulse train 

Fig.2.2.10  Impulse train and its Fourier transform

・Impulse train (Dirac comb) 

( ) ( )T
n

x x nT 




    (2.2.41) 

Because it is a periodic function of period p T , it has a Fourier series. 

The complex Fourier coefficients are 

0
2

2

1 1
( )

T in x
n TT

c x e dx
T T

 


   

where 0 2 T  . 

Hence we can express the impulse train as 

0
1

( ) in x
T

n

x e
T






    (2.2.42) 

Taking the Fourier transform, we get 

 

0

0

0
0

0

2
( ) ( )

( )
2

( )
2

T
n

n

x n
T

n



   


  




 










 

 







F

 (2.2.43) 

The Fourier transform of the impulse train is an impulse train. 
 
 
・Periodic function ( )f x of period p T  

Taking the Fourier transform, we get 
1

( )
2

1
( )

2

1 1ˆ ( ) ( ) ( )
2 2

n Ti x i x

n T
n

f f x e dx f x nT e dx 
 

   

 

     

Let t x nT  , then 
2 2( )

2 2

1 1ˆ ( ) ( ) ( )
2 2

T Ti t nT inT i t

T T
n n

f f t e dt e f t e dt  
 

 
  

 
 

 
   

 
    

Where, 
2

if

0 otherwise

inT

n

n
e T





  


  

From the impulse train,
2 2

( )inT

n n

n
e

T T
   

 

 

    

 
Furthermore, using the complex Fourier coefficients nc , 

2

2
( )

T i t
nT

f t e dt Tc


   at 

2n

T

   

Hence we get 

0 0 0

1ˆ ( ) ( ) 2 ( )
2

n n
n n

f Tc n c n        


 

 

               (2.2.44) 

where 0 2 T   

 
The Fourier transform of the periodic function ( )f x of period p T has values only at discrete points 0n  , 

and these values are represented by the complex Fourier coefficients of ( )f x . 
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Fig.2.2.11  Frequency analysis

2.2.5 Applications of Fourier Series and Fourier Transforms 
・Approximation 

Let ( )f x be a function on the interval x     that can be represented on this interval by a Fourier series. 

Then a trigonometric polynomial of degree N 

 0
1

( ) cos sin
N

n n
n

F x A A nx B nx


    (N fixed)            (2.2.45) 

is an approximation of the given ( )f x . The square error of F in Eq.(2.2.45) (with fixed N ) related to the 

function f on the interval x     

2( )E f F dx



                (2.2.46) 

is minimum if and only if the coefficients of F in Eq.(2.2.45) are the Fourier coefficients of f , that is, 

0 0 1 1, , , n nA a A a B b   . This minimum value *E is given by 

* 2 2 2 2
0

1

2 ( )
N

n n
n

E f dx a a b








 
    

 
             (2.2.47) 

From Eq.(2.2.47) we see that *E cannot increase as N increases, but may decrease. Hence, with increasing N, 
the partial sums of the Fourier series of f  

 0
1

( ) cos sin
N

n n
n

f x a a nx b nx


    

yield better and better approximations to f , considered from the viewpoint of the square error. 

 
・Frequency analysis 

The nature of presentation Eq.(2.2.10) of ( )f x becomes clear if we think of it as a superposition of sinusoidal 

oscillations of all possible frequencies, call a spectral representation. In Eq.(2.2.10), the spectral density 
ˆ ( )f  measures the intensity of ( )f x in the frequency interval between and  ( small, fixed). The 

integral 
2ˆ| ( ) |f d 



  

can be interpreted as the total energy of the physical system; hence an integral of 
2ˆ| ( ) |f  from a to b gives the 

contribution of the frequencies   between from a to b to the total energy. If a function ( )f x  is 

square-integrable, then we have Parseval’s theorem 
2 2ˆ| ( ) | | ( ) |f x dx f d 

 

 
              (2.2.48) 

If the system has a periodic solution ( )y f x that can be represented by a Fourier series, then we get a series 

of squares 2| |nc of Fourier coefficients nc given by Eq.(2.1.21). In this case we have a discrete spectrum (or 

point spectrum) consisting of countably many isolated frequencies (infinitely many, in general), the 
corresponding 2| |nc  being the contributions to the total energy. 

A system whose solution can be represented by a Fourier integral Eq.(2.2.10) leads to the above integral for 
the energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
・Solving method of differential equations 

In the next section, we will see that the partial differential equations can be solved by the Fourier series or the 
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Fourier transforms methods. 
Problem-1 

Find the real Fourier integral and the Fourier transform of the following functions. 

(1) ( ) ( 1 1)f x x x           (2) 2( ) ( 1 1)f x x x     

(3) ( ) ( 1 1)f x x x           (4) ( ) ( 1 1)xf x e x     

(5) | |( ) xf x e         (6) | |( ) sinxf x e x  

(7) 
1 if 0 1

( )
0 otherwise

x
f x

 
 


       (8) 

1 if 1 0

( ) 1 if 0 1

0 otherwise

x

f x x x

  
   



 

(9) 
1 if 1 2 1

( )
0 otherwise

x
f x

  
 


      (10)

1 if 1 0

( ) 1 if 0 1

0 otherwise

x x

f x x x

   
   



 

(11)
sin if 0 1

( )
0 otherwise

x x
f x

  
 


      (12)
sin if 1 1

( )
0 otherwise

x x
f x

   
 


 

 
Problem-2 

Find the Fourier transform of the following functions. 

(1) ( ) sinf x x         (2) ( ) 4cos cos 4f x x x    
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2.3 Linear Partial Differential Equations 
 

In this section, we see that the partial differential equations can be solved by the Fourier series or the Fourier 
transforms methods. 
 
2.3.1 Examples of Linear Partial Differential Equations of the Second Order 

Heat equation  
2

2
2

u u
c

t x

 


 
            (2.3.1) 

Wave equation  
2 2

2
2 2

u u
c

t x

 


 
            (2.3.2) 

Laplace equation  
2 2

2 2
0

u u

x y

 
 

 
            (2.3.3) 

Linear Homogeneous Partial Differential Equations 
The superposition or linearity principle holds. 

 
Example-1 

Find the temperature ( , )u x t in a bar of length L governed by the following heat equation and the conditions. 

 
2

2
2

(0 , 0)
u u

c x L t
t x

 
   

 
            (2.3.4) 

Boundary conditions: 
 (0, ) 0, ( , ) 0 ( 0)u t u L t t               (2.3.5) 

Initial condition: 

 
if 0 2

( ,0) ( )
if 2

x x L
u x f x

L x L x L

 
     

            (2.3.6) 

Solution by method of separating variables (review) 
We determine solution of the Eq.(2.3.4) of the form 

( , ) ( ) ( )u x t F x G t               (2.3.7) 

By differentiating and substituting it into Eq.(2.3.4), we obtain 
2

2
2

( ) ( )
( ) ( )

dG t d F x
F x c G t

dt dx
              (2.3.8) 

Dividing by 2 ( ) ( )c F x G t , we find 
2

2 2

1 ( ) 1 ( )

( )( )

dG t d F x
k

dt F xc G t dx
              (2.3.9) 

This yields two ordinary differential equations,  
2

2

( )
( ) 0

d F x
kF x

dx
                (2.3.10) 

2( )
( ) 0

dG t
kc G t

dt
                (2.3.11) 

From Eq.(2.3.10) and the boundary conditions, (0) 0, ( ) 0F F L  , 

(1) For 0k  , ( ) k x k xF x Ae Be  . From Boundary conditions, 0A B  . Hence ( ) 0F x   

(2) For 0k  , ( )F x ax b  .  From Boundary conditions, 0a b  . Hence ( ) 0F x   

(3) For 0k  , ( ) cos sinF x A px B px  , where 2p k   

From the boundary conditions, (0) 0F A  , ( ) sin 0F L B pL   

We must take 0B  . Hence sin 0pL  , so p n L  ( 1,2, )n    

Thus, we obtain 

( ) sin
n x

F x B
L


  ( 1, 2, )n                (2.3.12) 

For 2p k  , a solution of Eq.(2.3.11) is 
2 2

( ) c p tG t e                (2.3.13) 

The following is omitted. 
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Fig.2.3.1  Temperature in the bar of Length 2
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Fig.2.3.2  Temperature in the infinite bar 
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Solution by Fourier series 
We solve the problem using the method of separating variables and the Fourier series. From the boundary 

conditions, the temperature ( , )u x t can be expressed in the form of the Fourier sine series. 

 
1

( , ) ( )sinn
n

n x
u x t G t

L





               (2.3.14) 

Substituting Eq.(2.3.14) into Eq.(2.3.4), we obtain 

 
2

2

1 1

( )sin ( ) sinn n
n n

n x n n x
G t c G t

L L L

   

 

     
 

             (2.3.15) 

Hence, ( )nG t ’s must be satisfy the following equation. 

 
2

2( ) ( )n n

n
G t c G t

L

     
 

             (2.3.16) 

The solution of this equation is 

 
2 2 2

2
( ) expn n

c n
G t B t

L

 
  

 
             (2.3.17) 

From this and Eq.(2.3.14), we obtain 

 
2 2 2

2
1

( , ) sin expn
n

n x c n
u x t B t

L L

 



 
  

 
             (2.3.18) 

From the initial condition, we have 

 
1

( ,0) ( ) sinn
n

n x
u x f x B

L





                (2.3.19) 

This equation represents the Fourier sine expansion of ( )f x . Hence, nB ’s are the coefficients of the Fourier sine 

series. 

 
0

2
( )sin

L

n

n x
B f x dx

L L


               (2.3.20) 

Hence the formal solution is 

 
2 2 2

2 0
1

2
( , ) sin exp ( )sin

L

n

n x c n n v
u x t t f v dv

L L LL

  



 
  

 
            (2.3.21) 

From Eq.(2.3.20), we get 

2 2

2

2 20 2
2 2

4
( 1,5,9, )

2 4
sin ( )sin sin 4

( 3,7,11, )2

0 ( 2,4,6, )

L L

n L

L
n

n
n x n x L n

B x dx L x dx L
nL L L n

n
n

  




 
          




 







 (2.3.22) 

Hence the solution is 

 
2 2 2 2

2 2 2

4 1 3 9
( , ) sin exp sin exp

9

L x c x c
u x t t t

L LL L

   


     
      

    
          (2.3.23) 

 
Figure 2.3.1 shows the temperature for 1c  , 2L  and various values of time. 
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Example-2 
Find the temperature ( , )u x t in the infinite bar ( )x    governed by the following heat equation and the 

initial temperature. 

 
2

2
2

( , 0)
u u

c x t
t x

 
     

 
            (2.3.24) 

 
1 if 1

( ,0) ( )
0 if 1

x x
u x f x

x

     
            (2.3.25) 

 
Solution 

Let the Fourier transforms of ( , )u x t and ( )f x with respect to x be 

 
1 1ˆˆ( , ) ( , ) , ( ) ( )
2 2

i x i xu t u x t e dx f f x e dx  
 

  

 
             (2.3.26) 

The Fourier transforms of Eq.(2.3.24) and Eq.(2.3.25) become 

 2 2ˆ( , ) ˆˆ ˆ( ) ( , ), ( ,0) ( )
du t

c i u t u f
dt

                 (2.3.27) 

The general solution of this differential equation is 

 
2 2

ˆ( , ) c tu t C e                  (2.3.28) 

From the initial condition, we get 

 ˆˆ( ,0) ( )u C f                 (2.3.29) 

Hence the solution of this initial value problem is 

 
2 2ˆˆ( , ) ( ) c tu t f e                  (2.3.30) 

Taking the inverse Fourier transform, we obtain the formal solution 

 

2 2

2 2
2

( )
2

1 1 ˆˆ( , ) ( , ) ( )
2 2

1 1 ( )
( ) ( )exp

2 42

i x c t i x

c t i x v

u x t u t e d f e e d

x v
f v e d dv f v dv

c tc t

  

 

   
 


 

  

 

    

  

 

  
   

 

 

  
        (2.3.31) 

The last equation can be obtained by a similar method to Eq.(2.2.31). 
Hence the solution is 

 
2 2

0 1

2 21 0

1 ( ) ( )
( , ) (1 )exp (1 )exp

4 42

x v x v
u x t v dv v dv

c t c tc t 

       
      

    
           (2.3.32) 

Figure 2.3.2 shows the temperature for 1c  and various values of time. 

Taking ( ) (2 )z v x c t  as a variable of integration in Eq.(2.3.31), we get the alternative form 

 
21

( , ) ( 2 ) zu x t f x cz t e dz


 


             (2.3.33) 

 
Example-3 

Find the deflection in the string of length of L governed by the following wave equation and the conditions. 

 
2 2

2
2 2

(0 , 0)
u u

c x L t
t x

 
   

 
            (2.3.34) 

 (0, ) 0, ( , ) 0 ( 0)u t u L t t               (2.3.35) 

 
0

if 0 2
( ,0) ( ) , ( ) 0

if 2 t

x x L u
u x f x g x

L x L x L t 

  
       

          (2.3.36) 

 
Solution 

Similar to Example 1, from the boundary conditions Eq.(2.3.35), 

1

( , ) ( )sinn
n

n x
u x t G t

L





               (2.3.37) 

Substituting it into the wave equation Eq.(2.3.34), we obtain 
22

2
2

( )
( )n

n

d G t n
c G t

Ldt

    
 

             (2.3.38) 
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Hence, 

1

( , ) cos sin sinn n
n

cn t cn t n x
u x t B C

L L L

  



   
 

            (2.3.39) 

From the initial condition Eq.(2.3.36), 

( ,0) ( )u x f x  Fourier sine series  
0

2
( )sin

L

n

n x
B f x dx

L L


           (2.3.40) 

0

( ) 0
t

u
g x

t 


 


 Fourier sine series  

0

2
( )sin 0

L

n

n x
C g x dx

cn L




          (2.3.41) 

Hence the formal solution is 

1

( , ) cos sinn
n

cn t n x
u x t B

L L

 



  ,   
0

2
( )sin

L

n

n x
B f x dx

L L


            (2.3.42) 

 
 
Example-4 

Find the deflection in the infinite string ( )x    governed by the following wave equation and the 

conditions. 

 
2 2

2
2 2

( , 0)
u u

c x t
t x

 
     

 
            (2.3.43) 

 
0

1 if 1
( ,0) ( ) , 0

0 if 1 t

x x u
u x f x

x t 

       
           (2.3.44) 

 
D’Alembert’s solution of the wave equation (review) 

By introducing the new independent variables, 
,x ct x ct     ,             (2.3.45) 

a general solution of the wave equation Eq.(2.3.43) is 
( , ) ( ) ( )u x t x ct x ct                  (2.3.46) 

Then we find the solution satisfying the initial conditions. 
 
Solution by Fourier transform 

The Fourier transforms with respect to x of the wave equation Eq.(2.3.43) and the conditions Eq.(2.3.44) 
become 

2
2 2

2

ˆ( , )
ˆ( , )

d u t
c u t

dt

                 (2.3.47) 

0

ˆ( , )ˆˆ( ,0) ( ), 0
t

du t
u f

dt

 


              (2.3.48) 

We obtain a general solution of Eq.(2.3.47), 
ˆ( , ) c it c itu t Ae Be                 (2.3.49) 

From the initial conditions Eq.(2.3.48), the solution is 

 1 ˆˆ( , ) ( )
2

c it c itu t f e e                  (2.3.50) 

Taking the inverse Fourier transform of Eq.(2.3.50), we obtain the formal solution 

 1
( , ) ( ) ( )

2
u x t f x ct f x ct                (2.3.51) 

 
 
Example-5 

Find the solution of the following Laplace equation. 

 
2 2

2 2
0 (0 , 0 )

u u
x L y K

x y

 
     

 
            (2.3.52) 

 (0, ) 0, ( , ) 0 ( 0 )u y u L y y K                (2.3.53) 

 
if 0 2

( ,0) ( ) , ( , ) 0 (0 )
if 2

x x L
u x f x u x K x L

L x L x L

 
       

         (2.3.54) 
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Solution 
From the boundary conditions, Eq.(2.3.53) 

1

( , ) ( )sinn
n

n x
u x y G y

L





               (2.3.55) 

Substituting it into the Laplace equation Eq.(2.3.52), we obtain 
22

2

( )
( )n

n

d G y n
G y

Ldy

   
 

             (2.3.56) 

Hence, 

( ) exp expn n n

n y n y
G y a b

L L

         
   

            (2.3.57) 

From the boundary condition, ( , ) 0 (0 )u x K x L   , 

( ) exp exp 0n n n

n K n K
G K a b

L L

          
   

           (2.3.58) 

We obtain 
2

expn n

n K
b a

L

    
 

             (2.3.59) 

Hence, 
2

( ) exp exp

( ) ( )
exp exp exp

( )
2 exp sinh

n n

n

n

n y n K n y
G y a

L L

n K n K y n K y
a

L L L

n K n K y
a

L L

  

  

 

          
    

                
      

        
   

         (2.3.60) 

Let 2 expn n

n K
a C

L

   
 

and from the above equation, 

1

( )
( , ) sinh sinn

n

n K y n x
u x y C

L L

 



    
 

            (2.3.61) 

From the boundary condition, ( ,0) ( )u x f x , 

1

( ) sinh sinn
n

n K n x
f x C

L L

 



   
 

 , 
0

2
sinh ( )sin

L

n n

n K n x
C f x dx B

L L L

     
           (2.3.62) 

Hence the formal solution is 

1

( )
sinh

( , ) sin
sinh

n
n

n K y
n xL

u x y B
n K L

L










 
 
 
 
 
 

 , 
0

2
( )sin

L

n

n x
B f x dx

L L


           (2.3.63) 

 
Problem 

Find the temperature in a bar of length L  governed by the following heat equation and the conditions. 

 
2

2
2

(0 , 0)
u u

c x L t
t x

 
   

 
            (2.3.64) 

 
0

0, 0 ( 0)
x x L

u u
t

x x 

 
  

 
            (2.3.65) 

 
if 0 2

( ,0) ( )
if 2

x x L
u x f x

L x L x L

 
     

            (2.3.66) 

 
Hint 

From the boundary conditions, the temperature ( , )u x t can be expressed in the form of the Fourier cosine 

series. 

0

( , ) ( ) cosn
n

n x
u x t G t

L





               (2.3.67) 


