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3. Laplace Transforms 
 

The Fourier transforms of the unit step function and the sinusoidal functions don’t exist if generalized 
functions are not used. The Laplace transform corresponds to the Fourier transform multiplied by convergence 
factor , ( 0)te     and integrated with respect to t from zero to infinity. Although the mathematical concepts 
behind the Fourier and Laplace transforms are different, we may consider the Fourier transform as a special 
version of the Laplace transform for real frequencies, i.e. for s i . The Laplace transforms are used in solving 
ordinary differential equations and initial value problems. 
 
3.1 Laplace Transforms and Inverse Transforms 
 
3.1.1 Laplace Transforms and Inverse Laplace Transforms 

Let ( )f t be a given function that is defined for all 0t  . If 
0

( ) tf t e dt  exists and it has some finite value, 

then it is a function of s , say, ( )F s : 

0
( ) ( ) stF s f t e dt

     

This function ( )F s of the variable s is called the Laplace Transform of the original function ( )f t , and will be 

denoted by  ( )f tL . Thus 

Laplace transform 

 
0

( ) ( ) ( ) stF s f t f t e dt
   L   ( s is a complex number)         (3.1.1) 

Inverse Laplace transform 

 1 1
( ) ( ) ( )

2

c i st

c i
f t F s F s e ds

i
 

 
  L   ( c  )          (3.1.2) 

 
(Review) Fourier transform 

  1ˆ( ) ( ) ( )
2

i xf f x f x e dx


 


  F             (3.1.3) 

If we set s i in the Laplace Transform Eq.(3.1.1), it becomes the similar form of the Fourier transform 
Eq.(3.1.3). If s i    ( and are the real number and 0  ), it seems that ( )f t in Eq.(3.1.3) is multiplied 

by convergence factor te  . 
 

Table 3.1.1  Formulas of the Laplace transform  ( a and b are constants, ( )u t a is the unit step function) 

 

(1) Linearity ( ) ( )af t bg t  ( ) ( )aF s bG s  

(2) Derivative of function ( ) ( )nf t  ( 1)

1

( ) (0)
n

n n k k

k

s F s s f 



  

(3) Integral of function 
0

( )
t

f d   
( )F s

s
 

(4) s -Shifting ( )ate f t  ( )F s a  

(5) t -Shifting ( ) ( )f t a u t a   ( )ase F s  

(6) Differentiation of transform ( )t f t  ( )F s  

(7) Integration of transform 
( )f t

t
 ( )

s
F s ds



    

(8) Scaling ( 0)a   ( )f at  
1

( )F s a
a

 

(9) Convolution 
0

0

( )( ) ( ) ( )

( ) ( )

t

t

f g t f g t d

f t g d

  

  

  

 




 ( ) ( )F s G s  
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Table 3.1.2  Some functions ( )f t and their Laplace transforms ( )F s   ( a and are constants) 

 
( )f t  ( )F s  ( )f t  ( )F s  

( )t  Dirac delta function 1 ate  
1

s a
 

( )u t  unit step function, 1 
1

s
 cos t  

2 2

s

s 
 

( 0,1,2, )nt n    
1

!
n

n

s   sin t  2 2s




 

 
 
Sufficient Conditions for Existence of the Laplace Transform 

If ( )f t is piecewise continuous on every finite interval in the range 0t  and satisfies 

( ) tf t Me  for all 0t    (3.1.4) 

and for some constants and M . Then the Laplace transform of 

( )f t exists for all s  . 

 

∵ Since ( )f t is piecewise continuous, ( )ste f t  is integrable 

over any finite interval on the t-axis. From Eq.(3.1.4), assuming 
that s  , we obtain 

 
0 0 0

( ) ( ) ( )st st t st M
f t f t e dt f t e dt Me e dt

s



       

  L          (3.1.5) 

where the condition s  was needed for the existence of the last integral. 

 
 
Uniqueness 

If the Laplace transform of a given function exists, it is uniquely determined. 
 
 
3.1.2 Formulas of the Laplace Transform 
(1) Linearity 

The Laplace transform is a linear operation; that is, for any functions ( )f t and ( )g t whose Laplace transforms 

exist and any constants a and b , 

  ( ) ( ) ( ) ( )af t bg t aF s bG s  L             (3.1.6) 

∵    
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )st st staf t bg t af t bg t e dt a f t e dt b g t e dt aF s bG s
            L  

 
・Let ( ) 1f t  when 0t  . 

 
0

0

1
1 st ste dt e

s


       L .  Hence, when 0s  ,   1

1
s

L          (3.1.7) 

・Let ( )f t t when 0t  . 

  2 20 0
0 0

1 1 1 1st st st stt te dt te e dt e
s s s s

 
                   L   ( 0s  )         (3.1.8) 

・It is true for 0n  in 1!n nt n s    L because of the above equation and 0! 1 . We now make the induction 

hypothesis that it hold for any positive integer n . 

1 1 1
1 20 0

0

1 1 1 1 ! ( 1)!n n st n st n st n
n n

n n n n n
t t e dt t e t e dt t

s s s s s s


      

 

                    L L   (3.1.9) 

・Let ( ) atf t e when 0t  , where a is a constant. 

( ) ( )

0 0
0

1 1at at st s a t s a te e e dt e dt e
s a s a


                 L   ( 0s a  )        (3.1.10) 

Fig.3.1.1  Example of a piecewise 
continuous function on an interval a t b 
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・We set a i in the above equation. Then 

2 2 2 2

1i t s
e i

s i s s
 

  
        

L             (3.1.11) 

On the other hand, by the linearity of the Laplace transform and cos sini te t i t    ,  

   cos sini te t i t      L L L             (3.1.12) 

Equating the real and imaginary parts of these two equations, we obtain 

  2 2
cos

s
t

s






L ,   2 2

sin t
s







L            (3.1.13) 

 
(2) Laplace transform of the derivative of a function 

Suppose that ( )f t is continuous for all 0t  , satisfies Eq.(3.1.4) for some and M , and has a derivative ( )f t  

that is piecewise continuous on every finite interval in the range 0t  . Then the Laplace transform of the 
derivative ( )f t exists when s  , and 

   ( ) ( ) (0) ( ) (0)f t s f t f sF s f    L L   ( s  )          (3.1.14) 

∵ We first consider the case when ( )f t is continuous for all 0t  . Then 

 
00 0

( ) ( ) ( ) ( )st st stf t f t e dt f t e s f t e dt
          L  

For s  ,    ( ) 0 (0) ( ) ( ) (0)f t f s f t sF s f     L L  

If ( )f t is piecewise continuous, the range of integration in the original integral must be broken up into parts 

such that ( )f t is continuous in each such part. 

 
By applying the above equation to the second derivative ( )f t  we obtain 

      
2

( ) ( ) (0) ( ) (0) (0)

( ) (0) (0)

f t s f t f s s f t f f

s F s sf f

       

  

L L L
          (3.1.15) 

 
Similarly, we obtain the following extension. 

( ) 1 2 ( 1)( ) ( ) (0) (0) (0)n n n n nf t s F s s f s f f          L           (3.1.16) 

 
In Sec.3.2, we will see that the Laplace transform method solves differential equation and corresponding 

initial and boundary value problems. 
 
 
Example-1 

Let ( ) cosf t t . Find  ( )f tL .             (3.1.17) 

 
Solution 

( ) sinf t t    , 2 2( ) cos ( )f t t f t       . Also (0) 1f  , (0) 0f   . Then 

       2 2 2( ) ( ) ( ) (0) (0) ( )f t f t s f t sf f s f t s       L L L L  

 2 2( ) ( )s f t s L   Hence,   2 2
( )

s
f t

s 



L            (3.1.18) 

 
Example-2 

Let ( ) sinf t t t . Find  ( )f tL .             (3.1.19) 

 
Solution 

( ) sin cosf t t t t     , 2 2( ) 2 cos sin 2 cos ( )f t t t t t f t           .  

Also, (0) 0f  , (0) 0f   . Then 

         2 2 2( ) 2 cos ( ) ( ) (0) (0) ( )f t t f t s f t sf f s f t        L L L L L  

Hence,    2 2 2 2 2 2 2 2 2

2 2 2
( ) cos

( )

s s
f t t

s s s s

  
   

  
   

L L           (3.1.20) 
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(3) Laplace transform of the integral of a function 
If ( )f t is piecewise continuous and satisfies Eq.(3.1.4), then 

 
0

1 1
( ) ( ) ( )

t
f d f t F s

s s
      L L   ( 0s  , s  )          (3.1.21) 

 
∵  Suppose that ( )f t is piecewise continuous and satisfies Eq.(3.1.4) for some  and M . Clearly, if 

Eq.(3.1.4) holds for some negative , it also holds for positive , and we may assume that is positive. Then 

the integral 

0
( ) ( )

t
g t f d    

is continuous, and by using Eq.(3.1.4), we obtain 

0 0
( ) ( ) ( 1) ( 0)

t t t tM M
g t f d M e d e e     

 
                (3.1.22) 

This shows that ( )g t also satisfies an inequality of the form Eq.(3.1.4). Also, ( ) ( )g t f t  , except for points at 

which ( )f t is discontinuous. Hence ( )g t is piecewise continuous on each finite interval, and, by Eq.(3.1.14), 

     ( ) ( ) ( ) (0) ( )f t g t s g t g s    L L L            (3.1.23) 

Here, clearly, (0) 0g  , so that    ( ) ( )f t s g tL L . This implies Eq.(3.1.21) 

 
 
Example-3 

Let   2 2

1
( )

( )
f t

s s 



L . Find ( )f t . 

 
Solution 

From Table 3.1.2 we have 

1
2 2

1 1
sin t

s



     

L              (3.1.24) 

From this and Eq.(3.1.21), we obtain the answer 

1
2 2 20

0

1 1 1 1 1 1
sin cos (1 cos )

t
t

d t
s s

   
   

                 
L          (3.1.25) 

 
 
(4) s -Shifting: Replacing s by s a in ( )F s  

If ( )f t has the Laplace transform ( )F s where s  , then 

( ) ( )ate f t F s a    L   ( s a   )            (3.1.26) 

∵  ( )

0 0
( ) ( ) ( ) ( )s a t at st atF s a f t e dt f t e e dt e f t

            L  

 
Example-4 

By applying Eq.(3.1.26) to the formulas in Table 3.1.2, we obtain the following results. 
 

( )f t  ( )F s  

at ne t  1

!

( )n

n

s a 
 

cosate t  2 2( )

s a

s a 


 
 

sinate t  2 2( )s a
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Fig.3.1.2  Function ( )f t and ( )f t  

Fig.3.1.3  Unit step function 

Fig.3.1.5  Example-5 

Fig.3.1.6  Example-6 

Fig.3.1.4  Effects of the unit step function 

(5) t -Shifting: Replacing t by t a in ( )f t  

If ( )f t has the Laplace transform ( )F s , then the function 

0 if
( )

( ) if

t a
f t

f t a t a


   

       (3.1.27) 

with arbitrary 0a  has the Laplace transform ( )ase F s . 

Using the unit step function 
0 if

( )
1 if

t a
u t a

t a


   

      (3.1.28) 

we can write ( )f t in the form 

( ) ( ) ( )f t f t a u t a         (3.1.29) 

Then 

 ( ) ( ) ( )asf t a u t a e F s  L       (3.1.30) 

 

∵ ( )

0 0
( ) ( ) ( )as as st s t ae F s e f t e dt f t e dt

         

Substituting t a   in the integral, we obtain 

( ) ( )as s

a
e F s f a e d 

    

Because ( ) ( )f a u a   is zero for all from 0 to a , 

0
( ) ( ) ( )as se F s f a u a e d  

     

 
・Laplace transform of the unit step function 

  1
( ) asu t a e

s
 L ,   1

( )u t
s

L   ( 0s  ) (3.1.31) 

∵  
0 0

1 1
( ) ( ) 0 1

ast st st st as

a
a

u t a u t a e dt e dt e dt e e
s s


                  L  

 
Example-5 

Find the Laplace transform of the function 
if 1 4

( ) if 4 6

0 otherwise

k t

f t k t

 
   



      (3.1.32) 

Solution 
We write ( )f t in the terms of unit step functions. 

 ( ) ( 1) 2 ( 4) ( 6)f t k u t u t u t           (3.1.33) 

Hence we obtain 
4 62

( )
s s se e e

F s k
s s s

   
   

 
      (3.1.34) 

 
Example-6 

Find the Laplace transform of the function 
2 if 0

( ) 0 if 2

sin if 2

t

f t t

t t


 



 
  
 

      (3.1.35) 

Solution 
( ) 2 ( ) 2 ( ) ( 2 )sin

2 ( ) 2 ( ) ( 2 )sin( 2 )

f t u t u t u t t

u t u t u t t

 
  

    
     

 (3.1.36) 

2

2

2 2
( )

1

s se e
F s

s s s

  

  


      (3.1.37) 
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Area = 1 

Fig.3.1.7  Single square wave 

・Single square wave 
1

if
( )

0 otherwise
ka

a t a k
f t k

    


   (3.1.38) 

This function is represented in the terms of two unit step functions. 

 1
( ) ( ) ( ( ))kaf t u t a u t a k

k
       (3.1.39) 

Taking the Laplace transform, we obtain 

 
( )1 1

( )
as a k s ks

as
ka

e e e
f t e

k s s ks

   
  

   
 

L            (3.1.40) 

・Dirac delta function (unit impulse function) 

0
( ) lim ( )ka

k
t a f t


  .

if
( )

0 if

t a
t a

t a


 
   

           (3.1.41) 

From the above result and l’Hopital’s rule, we obtain 

 
0 0

1
( ) lim lim

ks ks
as as as

k k

e se
t a e e e

ks s


 
  

 


   L            (3.1.42) 

Also, if 0a  , then 

 ( ) 1t L               (3.1.43) 

 
(6) Differentiation of transforms 

If ( )f t satisfies the conditions for the existence of the Laplace transform, then the derivative of its transform 

with respect to s can be obtained 

   
0

( )
( ) ( ) ( )stdF s

F s t f t e dt t f t
ds

      L            (3.1.44) 

∵  
0 0 0

( )
( ) ( ) ( ) ( )st st stdF s d

f t e dt f t e dt t f t e dt t f t
ds ds s

               L  

Differentiation of the transform of a function corresponds to the multiplication of the function by t . 
 
Example-7 

Let ( ) sinf t t t . Find  ( )f tL .             (3.1.45) 

Solution 
From Table 3.1.2 

  2 2
sin t

s







L               (3.1.46) 

From this and Eq.(3.1.44), we obtain the answer 

  2 2 2 2 2

2
sin

( )

d s
t t

ds s s

 
 

      
L             (3.1.47) 

This is identical with Eq.(3.1.20). 

Similarly,     
2 2

2 2 2 2 2
cos cos

( )

d d s s
t t t

ds ds s s

 
 

        
L L  

(7) Integration of transforms 
If ( )f t satisfies the conditions for the existence of the Laplace transform and the limit of ( )f t t , 

as t approaches 0 from the right, exists, then 
( )

( )
s

f t
F s ds

t

       L  ( s  )            (3.1.48) 

∵ 
0 0 0

( ) ( ) ( ) ( )st st st

s s s s
F s ds f t e dt ds f t e ds dt f t e ds dt

                                       

The integral over s on the right equals ste t  when s  , and, therefore, 

0

( ) ( )
( ) st

s

f t f t
F s ds e dt

t t

           L  ( s  ) 

Integration of the transform of a function corresponds to the division of the function by t . 
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Fig.3.1.8  Region of integration 
in the t -plane 

Fig.3.1.9  sin sint t

(8) Scaling on the t-axis 
If 0a  then 

 
0

( ) ( ) stf at f at e dt
  L  

Let at v in the integral, we obtain 

 
0

1 1
( ) ( ) ( )

v
s

a s
f at f v e dv F

a a a


 L             (3.1.49) 

 
(9) Convolution 

Let ( )f t and ( )g t satisfy the conditions for the existence of the Laplace transform and  ( ) ( )f t F sL , 

 ( ) ( )g t G sL , then the Laplace transform of the convolution of ( )f t and ( )g t , 

0
( )( ) ( ) ( )

t
f g t f g t d         (3.1.50) 

is the product of their Laplace transform, that is, 

 ( )( ) ( ) ( )f g t F s G s L     (3.1.51) 

∵ ( )

0 0 0 0
( ) ( ) ( ) ( ) ( ) ( )s sp s pF s G s f e d g p e dp f g p e d dp    

             

We now set t p  . The region of this integration is the gray region in Fig.3.1.8. 

0 0
( ) ( ) ( ) ( ) ( ) ( )

tst st

G
F s G s f g t e dt d f g t d e dt     

           

 
The transform of a product is generally different from the product of the transforms of the factors, 

 ( ) ( ) ( ) ( )f t g t F s G sL  in general 

To see this take ( ) tf t e and ( ) 1g t  . Then ( ) ( ) tf t g t e ,  ( ) ( ) 1 ( 1)f t g t s L , but  ( ) 1 ( 1)f t s L  and 

 1 1 sL  give     2( ) ( ) 1 ( )f t g t s s L L . 

 
From the definition, it follows almost immediately that convolution has the properties 

f g g f      (commutative law)          (3.1.52) 

1 2 1 2( )f g g f g f g        (distributive law)          (3.1.53) 

( ) ( )f g v f g v       (associative law)          (3.1.54) 

0 0 0f f                  (3.1.55) 

similar to those of multiplication of numbers. Unusual are the following two properties. 
1f f  in general. For instance, 

2

0
1 1

2

t t
t d t       

( )( ) 0f f t   may not hold. For instance, 

 
0 0

0

1
sin sin sin sin( ) cos cos(2 )

2

1 1 1
cos sin(2 ) ( cos sin )

2 2 2

t t

t

t t t d t t d

t t t t t

    

 

      

         

 
 

 
Example-8 

Let   1
( )

( )
f t

s s a



L . Find ( )f t . 

Solution 
From Table 3.1.2 we know that 

1 1 ate
s a

     
L , 1 1

1
s

     
L  

Using Eq.(3.1.51), we get the answer 

0

1
1 1 ( 1)

tat at ate e d e
a

                  (3.1.56) 
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Fig.3.1.10  Path of integration for 
the inverse Laplace transformation 

( 1s and 2s are singularities) 

3.1.3 Partial Fractions for the Inverse Laplace Transform 
The inverse Laplace transformation is defined as 

 1 1
( ) ( ) ( )

2

c i st

c i
f t F s F s e ds

i
 

 
  L  ( c  )     (3.1.57) 

The integrand ( ) stF s e is integrated along a straight line C1 that is parallel to the 

imaginary axis on the complex plane as shown in Fig.3.1.10 (a). The line integral 
is extended to the counterclockwise integration around the simple closed path C 
that consists of the straight line C1 and the semicircle C2 of radius R   so that 
all singularities 1, , ns s lie inside C as shown in Fig.3.1.10 (b). The integral over 

the simple closed path is evaluated by using the residues. 

1 2

1

( ) ( ) ( )

2 Res ( )
k

st st st

C C C

n
st

s s
k

F s e ds F s e ds F s e ds

i F s e




 

   

  




     (3.1.58) 

If ( )F s approaches 0 as | |s approaches infinity, then 

2

( ) 0st

C
F s e ds    ( R  , 0t  )      (3.1.59) 

Hence, Eq.(3.1.57) is evaluated as 

1 1

1
( ) ( ) Res ( )

2 k

n
st st

C s s
k

f t F s e ds F s e
i 



          (3.1.60) 

Example-9 

Let
2

( )
( 1)

s a
F s

s s





. Find ( )f t . 

Solution 
The function ( ) stF s e has a simple pole at 0s  and a pole of second order at 1s   . These residues are 

20 00
Res ( ) lim ( ) lim

( 1)
st st st

s ss

s a
F s e sF s e e a

s 

      
 

 2
21 1 11

1
Res ( ) lim ( 1) ( ) lim lim (1 )

(2 1)!
st st st st st t t

s s ss

d d s a a s a
F s e s F s e e e te ae a te

ds ds s ss
 

  

                        
Hence, we obtain  1( ) ( ) (1 ) t tf t F s a a te ae      L            (3.1.61) 

 
The inverse of a linear transformation is linear. We can use partial fraction reduction to obtain the inverse 

Laplace transform. Let ( )F s be the following form such as a quotient of two polynomials, 
1

1 1 0
1

1 1 0

( )
( )

( )

m m
m m

n n
n

b s b s b s bB s
F s

A s s a s a s a







   
 

   



  ( n m )          (3.1.62) 

where ( )A s and ( )B s have real coefficients and no common factors. 

(1) If the roots of ( ) 0A s  , 1 2, , , n   , are different, then 

1 2

11 2

( )
n

n i

in i

c cc c
F s

s s s s   

    
    . 

( )
lim( )

( )i
i i

s

B s
c s

A s



   or 

( )

( )
i

i
i

B
c

A







      (3.1.63) 

Its inverse Laplace transform is 

 1

1

( ) ( ) i

n
t

i
i

f t F s c e



  L              (3.1.64) 

(2) If ( ) 0A s  has multiple roots, that is, 1 is a root of order k and 1, ,k n   are unequal roots, then 

1 1 1 111
1

1 1 111 1 1

( )
( ) ( ) ( )

n k n
k k i i i

k k i
i k i i ki i

c c c c cc
F s

s s ss s s    



    

      
               (3.1.65) 

1
1

1 ( )
lim ( )

( )! ( )

k i
k

i ik is

d B s
c s

k i A sds






 
  

  
, 

( )
lim( )

( )i
i i

s

B s
c s

A s



            (3.1.66) 

Its inverse Laplace transform is 

  11 11

1 1

( ) ( )
( 1)!

i

k n
ttii

i
i i k

c
f t F s t e c e

i
 

  

  
 L            (3.1.67) 
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(3) If ( ) 0A s  has complex conjugate simple roots, 1 i    and 1 i    ( ,  are real numbers), then the 

corresponding partial fraction is 

2 2 2 2
1 1

( ) ( )

( )( ) ( ) ( )

As B As B A s A B

s s s s

 
     

    
 

     
          (3.1.68) 

Its inverse Laplace transform is 

cos sint A B
e A t t  


 

 
 

             (3.1.69) 

where A is the imaginary part and
A B



the real part of 

 2 2( ) ( )1
lim

( )is

s B s

A s

 

 

 
 

 
Example-10 

2

5 5 1 3 4 3
( )

( 3)( 3) 3 39

s s
F s

s s s ss

  
   

   
  1 3 31 4

( ) ( )
3 3

t tf t F s e e    L  

Example-11 

2 2

1
( )

1( 1) ( 1)

s a a a a
F s

s ss s s

  
   

 
   1( ) ( ) (1 ) t tf t F s a a te ae      L  

It is identical with the result of Example-9. 
Example-12 

2 2 2

( 2) 2
( )

4 8 ( 2) 4 ( 2) 4

s s s
F s

s s s s

 
  

     
  1 2( ) ( ) (cos 2 sin 2 )tf t F s e t t  L  

Example-13 
2

2
2

16
( ) ln ln( 16) 2 ln

s
F s s s

s


     

Its derivative is 

2

2 2
( )

16

s
F s

ss
  


 

Taking the inverse Laplace transform and using the equation of the differentiation of the transform, we obtain 

 1 ( ) 2cos 4 2 ( )F s t t f t     L  

Hence the inverse Laplace transform of F(s) is 

 1 2
( ) ( ) ( cos 4 1)F s f t t

t
    L   (

0 0
lim ( ) lim8sin 4 0
t t

f t t
 

  ) 

 
3.1.4 The Laplace Transforms of the Periodic Functions 

Let ( )f t be a piecewise continuous function that is defined for all positive t and has the period ( 0)p  , that is, 

( ) ( )f t np f t   0, 1, 2,n       for all 0t             (3.1.70) 

The Laplace transform of this function is 

 
0

1
( ) ( ) ( )

1

p st
ps

F s f t f t e dt
e


 

 L   ( 0s  )           (3.1.71) 

∵ We can write the integral from zero to infinity as the series of integrals over successive periods. 

 
2 3

0 0 2
( ) ( ) ( ) ( ) ( )

p p pst st st st

p p
f t f t e dt e f t dt e f t dt e f t dt

            L  

Replacing the variables in each integral, 

  ( ) ( 2 )

0 0 0
( ) ( ) ( ) ( 2 )

p p pst s p s pf t f t e dt e f p d e f p d                L  

Since ( )f t is a periodic function of period p , we thus obtain 

  ( ) ( 2 )

0 0 0

2

0

( ) ( ) ( ) ( )

1 ( )

p p pst s t p s t p

psp sp st

f t f t e dt e f t dt e f t dt

e e f t e dt

    

  

   

     

  






L
 

The series in brackets […] is a geometric series whose sum is1 (1 )pse . Hence, we obtain 

 
0

1
( ) ( )

1

p st
ps

f t f t e dt
e




 L   ( 0s  ) 
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Fig.3.1.11  Example of periodic function

0
0

( )f t

t1 2 3 4

Example-14 
Find the Laplace transforms of the piecewise continuous periodic 

function of the period 2p   shown in Fig.3.1.11. 

 
if 0 1

( )
0 if 1 2

t t
f t

t

 
   

      (3.1.72) 

Solution 
Since the period 2p  , we obtain by integration and simplification 

1

20 0

1
1

2 2 2 2 20
0

1 1
( ) ( )

1 1

1 1 1 1 1 1

1 1 (1 )

p st st
ps s

s s s
st st s

s s s

F s e f t dt e t dt
e e

t e e se
e e dt e

s s se e s s e

 
 

  
  

  

 
 

                       

 


        (3.1.73) 

 
3.1.5 Initial Value Theorem and Final Value Theorem 
 
Initial value theorem 

0
lim ( ) lim ( )
t s

f t sF s
  

               (3.1.74) 

Final value theorem 
If all poles of ( )sF s are in the left half-plane, 

0
lim ( ) lim ( )
t s

f t sF s
 

               (3.1.75) 

 

∵ The Laplace transform of the derivative of a function is expressed as follows 

0
( ) ( ) (0)stf t e dt sF s f

                 (3.1.76) 

The left side of Eq.(3.1.76) approaches zero as s approaches infinity. Hence, 0 lim ( ) (0)
s

sF s f


  . This 

implies Eq.(3.1.74). 
If ( )F s converges for 0s  , the left side of Eq.(3.1.76) approaches lim ( ) (0)

t
f t f


  as s approaches 0. 

Hence, 
0

lim ( ) (0) lim ( ) (0)
t s

f t f sF s f
 

   . This implies Eq.(3.1.75). 

 
The final value theorem is useful because it gives the long-term behavior without having to perform partial 

fraction decompositions or other difficult algebra. If a function has poles in the right-hand plane or on the 
imaginary axis, the behavior of this formula is undefined. 
 
 
Example-15 

Let
4

( )
( 1)( 2)

s
F s

s s s




 
. Find lim ( )

t
f t


. 

Solution 
By using the final value theorem, we get 

0 0 0

(4 ) 4
lim ( ) lim ( ) lim lim 2

( 1)( 2) ( 1)( 2)t s s s

s s s
f t sF s

s s s s s   

 
   

   
          (3.1.77) 

To check it we use the partial fraction expansion 
4 2 5 3

( )
( 1)( 2) 1 2

s
F s

s s s s s s


   

   
            (3.1.78) 

Its inverse Laplace transform is 

 1 2( ) ( ) 2 5 3t tf t F s e e     L             (3.1.79) 

Hence, lim ( ) 2
t

f t


 . 

 
 
Example-16: Incorrect use of the final value theorem 

Let
1

( )
( 2)( 3)

F s
s s


 

. Find lim ( )
t

f t


. 
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Solution 
There exists an unstable pole 2s  . The partial fraction expansion gives 

1 1 5 1 5
( )

( 2)( 3) 2 3
F s

s s s s
  

   
            (3.1.80) 

Inverse Laplace transformation of ( )F s gives 

 1 2 31 1
( ) ( )

5 5
t tf t F s e e   L             (3.1.81) 

This immediately leads the unbounded final value. But incorrect use of the final value theorem gives the wrong 
final value as follows. 

0 0
lim ( ) lim 0

( 2)( 3)s s

s
sF s

s s 
 

 
            (3.1.82) 

 
Problem-1 

Find the Laplace transforms of the following functions. ( , and k are constants) 

(1) 2 3 2t t    (2) 2 3te     (3) 52 tte    (4) 2 2tt e  

(5) cos( )t    (6) 2sin 3t   (7) 2 cos 4te t   (8) cos 2t t  

(9) 2 cos3t t   (10) 2 sin 3tte t   (11) 1 2t    (12) ( 2)te u t   

(13)    (14)       (15) Staircase function 

 
Problem-2 

Find the Laplace transforms of the following functions, which are assumed to be periodic of the period 
2p  . 

(1) ( ) 1 (0 2)f t t t           (2) 2( ) ( 1) (0 2)f t t t     

(3) ( ) 1 (0 2)f t t t           (4) 1( ) (0 2)tf t e t    

(5) 
1 if 0 1

( )
0 if 1 2

t
f t

t

 
   

       (6) 
if 0 1

( )
1 if 1 2

t t
f t

t

 
   

 

(7) 
0 if 0 1 2

( )
1 if 1 2 2

t
f t

t

 
   

       (8) 
if 0 1

( )
2 if 1 2

t t
f t

t t

 
    

 

(9) 
sin if 0 1

( )
0 if 1 2

t t
f t

t

  
   

      (10) ( ) sin (0 2)f t t x    

 
Problem-3 

Find the inverse Laplace transforms of the following functions. 

(1) 
2

4s 
   (2) 

2

1

( 3)s




  (3) 
2

3

4

s

s




  (4) 
2

3

9

s

s




 

(5) 
2

2 1

4 5

s

s s


 

  (6) 
2

1

4 5

s

s s


 

  (7) 
2 2

2

( 16)

s

s




  (8) 
2 2

1

( 4)

s

s s




 

(9) 
2 2

3

( 1) ( 4)

s

s s


 

  (10) 
2

ln
1

s

s




  (11) 
2

2

25
ln

s

s


  (12) 

2

2

4
ln

s

s


 

0
0

( )f t

t1 2 3

k

2k

0 
0 

( )f t

t  1 2 3 4 

k

k
0

0

( )f t

t1 3

k
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(1)  If 0t   then 0e A I  

(2) 
( )t

t td e
e e

dt
 

A
A AA A  

(3) ( )t te e e A A A  

(4) teA is nonsingular 

(5) 1( )At Ate e   

(6) 1 1[( ) ]te s  A I AL  

1 adj( )

| |

s

s
  

   

I A

I A
L  

Table 3.2.1  Properties of matrix 
exponential teA  

0

1 2 1 2
( ) , (0)

3 4 2 2
t t

                     
y Ay r y y y

 

2

2
1

0 3 2

2 2

2 4 11
2

4 2 ( 1)( 2)1
( ) ( ) ( )

3 1 2( 1)( 2) 2 4 2 12
( 1)( 2)

s s

s s s sss s s
ss s s s s

s s s s



                                   

Y I A y R

3.2 Systems of Linear Differential Equations  
 

The Laplace transform method solves differential equation and corresponding initial and boundary value 
problems. 
 
3.2.1 Initial Value Problem of Systems of Linear Differential Equations with Constant Coefficients 

( ) ( ) ( )t t t  y Ay r               (3.2.1) 

Initial value: 0(0) y y              (3.2.2) 

where 1 2( ) [ ( ) ( ) ( )]T
nt y t y t y ty  , 1 2( ) [ ( ) ( ) ( )]T

nt r t r t r tr  and A is an n n real matrix. 

We transform Eq.(3.2.1), writing        1 2( ) ( ) ( ) ( ) ( )
T

ns t y t y t y t    Y y L L L L and  ( ) ( )s tR rL  

     1 2( ) ( ) ( )
T

nr t r t r t   L L L . 

This gives 

0( ) ( ) ( )s s s s  Y y AY R    (3.2.3) 

Collecting ( )sY -terms, we have 

 1
0( ) ( ) ( )s s s  Y I A y R    (3.2.4) 

where I is the n n unit matrix (identity matrix). 
Taking the inverse Laplace transform, we obtain 

   1 1 1
0( ) ( ) ( ) ( )t s s s       y Y I A y RL L  (3.2.5) 

Using the matrix exponential defined in Sec.1.2, 

2 21 1

2! !
t k ke t t t

k
     A I A A A    (3.2.6) 

the solution of the initial value problem is expressed as 
( )

0 0
( ) ( )

tt tt e e d    A Ay y r    (3.2.7) 

Hence there is a relation 
1 1( )te s    

A I AL    (3.2.8) 

 
Advantages of the Laplace transform method 
(1) Solving a nonhomogeneous ordinary differential equation does not require first solving the homogeneous 
ordinary differential equation. 
(2) Initial values are automatically taken care of. 
(3) Complicated input ( )tr can be handled very efficiently by using the unit step function ( )u t a and Dirac delta 

function ( )t a  . 

 
Example-1 

Using Laplace transforms, solve the following initial value problem, which is the same as Eq.(1.2.42) in 
Sec.1.2. 

                (3.2.9) 
 
Solution 

By taking the Laplace transform of Eq.(3.2.9), we obtain 
 0( ) ( ) ( )s s s s  Y y AY R              (3.2.10) 

Solving algebraically, we get 
 

       (3.2.11) 
 
 
Using partial fractions and taking the inverse Laplace transform, we obtain the solution 

  
2

1 1

2
2

1 1 2 1 2 1 1

1 2 2 2( ) ( )
1 3 4 1 4 1 2 3 1 1

1 2 4 4 2

t t

t t

e e
s s st s

e e t
s s s s

 

 

 

               
               

y YL L          (3.2.12) 

This is identical with Eq.(1.2.58). 
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Example-2 
Using the Laplace transforms, solve the following initial value problem, which is similar to Eq.(1.2.67) in 

Sec.1.2. 

 10
0

20

0 1
, (0)

25 6

y

y

             
y Ay y y y            (3.2.13) 

Solution 
By taking the Laplace transform of Eq.(3.2.13), we obtain 
 0( ) ( )s s s Y y AY               (3.2.14) 

Solving algebraically, we get 

 1
0 02 2

6 11
( ) ( )

25( 3) 4

s
s s

ss
  

       
Y I A y y            (3.2.15) 

Taking the inverse Laplace transform, we obtain the solution 

 

1 1
0

2 2 2 2 2 2
101

20

2 2 2 2 2 2

3 3

3

( ) [( ) ]

3 1
4 43 4 4

( 3) 4 ( 3) 4 ( 3) 4

25 3
4 434 4

( 3) 4 ( 3) 4 ( 3) 4

3 1
(cos 4 sin 4 ) sin 4

4 4
25

sin 4
4

t t

t

t s

s

ys s s

y
s

s s s

e t t e t

e t e

 



 



 

     
                       

         






y I A yL

L

10

3 203
(cos 4 sin 4 )

4
t

y

y
t t

 
   
   
     

        (3.2.16) 

This is corresponding to Eq.(1.2.76) with 1 10 2 10 20, (3 ) 4c y c y y    . 

 
Problem-1 

Using the Laplace transforms, solve the following initial value problem. 

 0, (0)  y Ay y y  

(1) 0

5 4 1
,

2 3 1

   
    
   

A y     (2) 0

0 1 1
,

4 4 0

   
        

A y  (3) 0

1 1 1
,

5 1 1

   
         

A y  

(4) 0

1 4 1
,

2 3 0

   
        

A y   (5) 0

0 1 0 1

0 0 1 , 0

10 17 8 0

   
       
        

A y  

Problem-2 
The following initial value problems are the same problems in Sec.1.2. Solve them by using the Laplace 

transforms and confirm the answers. 

 0, (0)  y Ay y y  

(1) 0

7 5 1
,

1 3 1

   
    
   

A y  (2) 0

1 2 1
,

2 5 1

   
        

A y      (3) 0

1 5 5
,

2 1 1

   
         

A y  

(4) 0

1 2 0
,

4 3 1

   
       

A y  (5) 0

2 0 1
,

0 2 1

   
        

A y      (6) 0

0 1 0 1

0 1 2 , 0

0 2 6 0

   
        
       

A y  

(7) 
10

0 20

30

0 1 3

2 1 3 ,

2 1 5

y

y

y

   
         
      

A y   (8) 
10

0 20

30

2 6 4

4 8 4 ,

2 3 0

y

y

y

   
          
      

A y   (9) 
10

0 20

30

2 6 4

3 6 2 ,

1 1 2

y

y

y

   
          
      

A y  


