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3. Laplace Transforms

The Fourier transforms of the unit step function and the sinusoidal functions don’t exist if generalized
functions are not used. The Laplace transform corresponds to the Fourier transform multiplied by convergence
factor e, (o >0) and integrated with respect tot from zero to infinity. Although the mathematical concepts
behind the Fourier and Laplace transforms are different, we may consider the Fourier transform as a special
version of the Laplace transform for real frequencies, i.e. fors =i . The Laplace transforms are used in solving
ordinary differential equations and initial value problems.

3.1 Laplace Transforms and Inverse Transforms

3.1.1 Laplace Transforms and Inverse Laplace Transforms
Let f (t) be a given function that is defined for allt > 0. If J:| f (t)|e"’tdt exists and it has some finite value,
then it is a function of s, say, F(s):
F(s) = j: f(t)e dt
This function F(s) of the variable sis called the Laplace Transform of the original function f (t), and will be

denoted by £[ f (t)]. Thus
Laplace transform

F(s)=£[f®)]= j: f(t)edt (s is a complex number) (3.1.1)
Inverse Laplace transform
f(t)=$‘1[F(s)]=2iﬂij:fF(s)es‘ds (c>0) (3.1.2)

(Review) Fourier transform
f(0)=F[f(x)]= % j“ f (x)e "dx (3.1.3)

If we sets=iwin the Laplace Transform Eq.(3.1.1), it becomes the similar form of the Fourier transform
Eq.(3.1.3). Ifs=oc+iw (o and w are the real number and o > 0), it seems that f (t) in Eq.(3.1.3) is multiplied

by convergence factore™".

Table 3.1.1 Formulas of the Laplace transform (aandb are constants, u(t—a) is the unit step function)

(1) | Linearity af (t) +bg(t) aF (s) +bG(s)
(2) | Derivative of function f M (t) s"F(s) - Zn: s" £ ()
(3) | Integral of function _[; f(r)dr ?
(4) | s-Shifting e™ f (t) F(s—a)
(5) | t-Shifting f(t—a)u(t—a) e*F(s)
(6) | Differentiation of transform tf(t) —F'(s)
(7) | Integration of transform @ _Lw F(5)ds
(8) | Scaling (a>0) f (at) %F(s/a)

(fxg)®) =, f()g(t-7)dz
(9) | Convolution . F(s)G(s)

= [, ft-ng()dr
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Table 3.1.2 Some functions f (t) and their Laplace transforms F(s)  (aand w are constants)

f(t) F(s) f(t) F(s)
S6(t) Dirac delta function 1 pdt 1
s—a
. . 1 S
u(t) unit step function, 1 = cos wt >
S S*+w
¢ 0,12 n! i
n=0,14.--- sin ot
( ) s @ s% + w?

Sufficient Conditions for Existence of the Laplace Transform
If f(t)is piecewise continuous on every finite interval in the ranget > 0 and satisfies

|f ()< Me" forallt>0 (3.1.4)

and for some constants y and M . Then the Laplace transform of /"
f (t) exists foralls > y . \ /'_/

" Since f (t) is piecewise continuous, e * f (t) is integrable

over any finite interval on the t-axis. From Eq.(3.1.4), assuming
thats >y , we obtain

Fig.3.1.1 Example of a piecewise
continuous function on an intervala<t <b

[[1f@edt< [ Mere "t - SMy (3.1.5)

where the condition s > » was needed for the existence of the last integral.

[£[f ()] = j f(t)e dt| <

Uniqueness
If the Laplace transform of a given function exists, it is uniquely determined.

3.1.2 Formulas of the Laplace Transform
(1) Linearity
The Laplace transform is a linear operation; that is, for any functions f (t) and g(t) whose Laplace transforms

exist and any constantsa andb ,
£L[af (t)+bg(t)] = aF (s) +bG(s) (3.1.6)

£[af (t) +bg(t)] = j:{af (t) +bg(t)} e “dt=a j:‘ f(t)e dt+ bj: g(t)e *dt = aF (s) + bG(s)
* Let f(t)=1whent>0.
f[l]zj':e‘s‘dtz[_?le‘s‘} . Hence, whens >0, ;f[l]:% (3.1.7)
0
* Let f(t)=t whent>0.
— S 75 —f 1 ” 1
£L[t]= j te™dt = [s t} += j e tdt_[s—e l = (s>0) (3.1.8)

+ It is true forn=0 in:é’[t”] =nl/s""* because of the above equation and0!=1. We now make the induction

hypothesis that it hold for any positive integern .
* | 1
x n+l j tn+1 —stdt |: -1 n+le st:l n+1J‘ t"e —stdt n+l$|:t :| n+1 n! :(n+1)' (319)
S 0

S Sn+l Sn+2

- Let f(t) =e* whent >0, wherea is a constant.

at] jea‘e’“dt Ie(s At = [ 1e(”)t} S (s—a>0) (3.1.10)
s-a , S-a
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- We seta = iw in the above equation. Then

:Z[e"”tjz 3_1ia) - s ja)2 +i82 j-)a)z R
On the other hand, by the linearity of the Laplace transform and e = coswt +isinwt ,

£[ e |=L[coswt]+iL[sinot] (3.1.12)
Equating the real and imaginary parts of these two equations, we obtain

ZL[coswt] = < jwz , L[sinot] = 7 j—)a)z (3.1.13)

(2) Laplace transform of the derivative of a function
Suppose that f (t) is continuous for allt > 0, satisfies Eq.(3.1.4) for some y and M , and has a derivative f'(t)

that is piecewise continuous on every finite interval in the ranget>0. Then the Laplace transform of the
derivative f'(t) exists whens >y, and

L[] =sL[f ()] f(0)=sF(s)-f(0) (s>7) (3.1.14)
".* We first consider the case when f'(t) is continuous for allt > 0. Then

L[] = j: e dt=[ f(t)e™ ] +s jo” f(t)e dt
Fors>y, L[f'(t)]=0-f(0)+sL[f(t)]=sF(s)- f(0)

If f'(t)is piecewise continuous, the range of integration in the original integral must be broken up into parts
such that f'(t) is continuous in each such part.

By applying the above equation to the second derivative f"(t) we obtain

LT ®)]=sL[f'1)]- f'(0) =s{sL[ f ()] f (0)} - f'(0)

(3.1.15)
=s’F(s)-sf (0)— '(0)
Similarly, we obtain the following extension.
L VM) ]=5"F(s)-s""f(0)-s"F'(0) -~ F"(0) (3.1.16)

In Sec.3.2, we will see that the Laplace transform method solves differential equation and corresponding
initial and boundary value problems.

Example-1
Let f(t) =coset . Find L[ f (t)]. (3.1.17)

Solution
f'(t) = —wsinwt, "(t) = —w?coswt = -’ f (t). Also f(0) =1, f'(0)=0. Then
LLF(1)] = -’ L[ F ()] = SSL[f ()] -sF (0) - /(0) = s2L[ F (1)]—s

(s*+0?)L[f()]=s Hence, L[f(1)]=—— (3.1.18)
s +w
Example-2
Let f (t) =tsinwt . Find£[ f (t)]. (3.1.19)
Solution

f'(t) =sinwt + wtcoswt , f"(t) = 2w cos wt — w’tsin wt = 2w cos wt —” f (t) .
Also, f(0)=0,f'(0)=0.Then

LF(1)] = 20L[cos ot] - L[ f ()] = SSL[ T ()] - s (0) - F'(0) = S*L[ f (1)]
20

s’ + @’

2w S 2ws

S2+a? S +a? (S2 +a)2)2

Hence, Z[f(t)]= £L[coswt] = (3.1.20)
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(3) Laplace transform of the integral of a function
If f(t)is piecewise continuous and satisfies Eq.(3.1.4), then

x“{j f(z)erzéx[f(t)]zéF(s) (s>0,5>7) (3.1.21)

Suppose that f (t) is piecewise continuous and satisfies Eq.(3.1.4) for some y and M . Clearly, if
Eq.(3.1.4) holds for some negative y , it also holds for positive y , and we may assume that y is positive. Then
the integral

t
g(t) :jo f(r)dr

is continuous, and by using Eq.(3.1.4), we obtain
o] < [,|f@)]dr <M | e de Mety<Mer (50 (3.1.22)
0 0 7/ 7/

This shows that g(t) also satisfies an inequality of the form Eq.(3.1.4). Also, g'(t) = f (t), except for points at
which f (t) is discontinuous. Hence g’(t) is piecewise continuous on each finite interval, and, by Eq.(3.1.14),

L[] =£[g'0]=s2[90]-90)  (s>7) (3.1.23)
Here, clearly, g(0)=0,so that£[ f(t)]=s£[g(t)]. This implies Eq.(3.1.21)

Example-3

LetZ[ f(t)] _Find f(t).

B 1
s(s® + %)

Solution
From Table 3.1.2 we have

:Zl[ - 1 2}:isina)t (3.1.24)
S“+w 1)
From this and Eq.(3.1.21), we obtain the answer
t
- :ijlsina)rdr:i —icosa)r =i(1—cosa)t) (3.1.25)
w0 , O

s\ s+ 0| o

(4) s -Shifting: Replacing s by s—ain F(s)
If f(t) has the Laplace transform F(s) wheres >y , then
L[e"f(t)|=F(s-a) (s-a>y) (3.1.26)

©

" F(s—a)= j: f(t)e Dt = jo {f)ye e dt=2£]ef (1) ]

Example-4
By applying Eq.(3.1.26) to the formulas in Table 3.1.2, we obtain the following results.
f(t) F(s)
aten n!
u s—a
e” cos wt (s—a)—2+a)2
at o @
e” sin wt (s—a)—2+a)2
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(5)t -Shifting: Replacingt byt —ain f (t) (o) f(t)
If f(t) has the Laplace transform F(s) , then the function
] 0 ift<a T\/\
ft)= . (3.1.27) |
f(t-a) ift>a [
with arbitrary a > 0 has the Laplace transforme *F(s) . 0 t 0 ° t
Using the unit step function Fig.3.1.2 Function f (t) and f(t)
0 ift
u(t-a) ={ I <@ (3.1.28)
1 ift>a u(t) u(t = a)
we can write f (t) in the form 1 1
f(t)=f(t—a)u(t-a) (3.1.29) |
Then I
L[ f(t-a)u(t—a)]=e"F(s) (3.1.30) 0 t 0 a t

B B Fig.3.1.3 Unit step function
© e ®F(s)=e jo“ f(t)e Sdt = jo“ f(t)e 2t

Substituting t+a =z in the integral, we obtain f @ h )
e*F(s)=| f(r-a)e™dr oy N 5"
Because f (r — zi)u(r—a) iszero forallz fromOtoa, g bt 0 _2,' —E>— 0 %
e ®F(s)=| f(r-a)u(r-a)e*de i L L \J
- Laplace transform of the unit step function (a) f(t) =5sint (b) f(t)u(t—2) (c) f(t—2)ult-2)

L[ut-a)] :%e—as £[u(®)] :% (s>0) (3.1.31) Fig.3.1.4 Effects of the unit step function

: x[u(t—a)]=J‘;u(t—a)eS‘dt=I0a0~eS‘dt+J‘:l~es‘dt=[%leSt} :le’as

s
Example-5
Find the Laplace transform of the function
k ifl<t<4
f(t)=<-k ifd<t<6 (3.1.32) kb;l__l
0  otherwise : :
. 1 4 6 t
Solution -k L FI—;
We write f (t) in the terms of unit step functions.
£(t) = k[u(t 1)~ 2u(t—4) + u(t —6)] @13z Mt = 2u(t =4+ u(t - 6)]
Hence we obtain Fig.3.1.5 Example-5
-s —4s —6s
F(s) = k(e _e e j (3.1.34)
s s s
Example-6
Find the Laplace transform of the function
2 if O<t<»rx F(0)
f(t)y=7 0 ifz<t<2rz (3.1.35) 2 "
sint if  t>27 ' N v
Solution 0 i 2w 3TN AAT t
f(t)=2u(t)-2u(t—=)+u(t—27)sint (3.1.36) Fig.3.1.6 Example-6
=2u(t)-2u(t—z)+u(t-27)sint—27) =
—7s —27s
F)=2-2".¢" (3.1.37)
s

s 52 +1
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- Single square wave

f (D)= M ifa<t<a+k (3.1.38) Area=1
0 otherwise
This function is represented in the terms of two unit step functions. —
a a+k t

1
fo()=—{u(t-a)-u(t-(a+k 3.1.39
alt) k{ (t=2)-u(t~( ))} ( ) Fig.3.1.7 Single square wave
Taking the Laplace transform, we obtain

—as —(a+k)s —ks
L[ fa0] :Hes _£ - }: e 1‘kes (3.1.40)
- Dirac delta function (unit impulse function)
S(t—a)=lim f, (t).5(t—a):{oo ift=a (3.1.41)
koo @ 0 iftza
From the above result and I’Hopital’s rule, we obtain
o eleet o se

L[s(t-a)]= Iklirge =e LILT(]) - e (3.1.42)
Also, if a=0, then

L[s)]=1 (3.1.43)

(6) Differentiation of transforms
If f(t)satisfies the conditions for the existence of the Laplace transform, then the derivative of its transform

with respect to s can be obtained

% ~F(s) = [/ [tf (O] "dt = £[1 0] (3.1.44)
dF(S) d = —st » 0 —st *© —st
ngjo f(tyedt=| g[f(t)e Jdt= [ —tf e dt=£[-tf ()]

Differentiation of the transform of a function corresponds to the multiplication of the function by -t .

Example-7
Let f (t) =tsinwt . Findf[ f (t)] . (3.1.45)
Solution
From Table 3.1.2
Llsinwt] = 3.1.46
[sinot]= 5 (3.1.46)
From this and Eq.(3.1.44), we obtain the answer
. d w 2ws
Lltsinwt|=—-— = 3.1.47
[tsin et] ds[s%wz} (s* + »°)? ( )

This is identical with Eq.(3.1.20).

- d df_s s~
Similarly, £[tcoswt]= —E{f[coswt]} = _E[sz e } “ oty

(7) Integration of transforms
If f(t) satisfies the conditions for the existence of the Laplace transform and the limit of f(t)/t,

ast approaches 0 from the right, exists, then

x[@} :j“’F(g)dg (s>7) (3.1.48)

S

["FE)ds= jy[j: () e‘g‘dt} ds = j;[ [7to e‘g‘dﬂ dt=|f (t)[ fe-ﬁtdg} dt

The integral over § on the right equals e’s‘/t whens >y, and, therefore,
o e g T() f(t)}
FEs=| e —Zdt=¥¢| —2 s>
[, FEds = [ e=— { el CESD)
Integration of the transform of a function corresponds to the division of the function by t.



Mathematics IV~ 3-7

(8) Scaling on the t-axis
If a>0then

£[f(at)]= j: f (at)e *dt

Letat = v in the integral, we obtain

£[f(at)]= j;é f(v) Y :éF(g) (3.1.49)

(9) Convolution
Let f(t) and g(t) satisfy the conditions for the existence of the Laplace transform and f[f(t)]z F(s),

£[9(t)] =G(s) , then the Laplace transform of the convolution of f(t)and g(t),

t

(f*g)t) = f(gt-7)dr (3.1.50)
is the product of their Laplace transform, that is,

L[(f*9)(®)] = F(s)G(s) (3.1.51)
" F(s)G(s) = j: f(r)e’“dr-J‘:g(p)e’s"dp - j:j: f(r)g(p)e*dzdp _
We now set t =7+ p. The region of this integration is the gray region in Fig.3.1.8. ' ' ¢

_ Cya-st e _ st Fig.3.1.8 Region of integration
FOGE) = [[ T(gtt-re “dtdr = UO f(D)g(t r)dr}e dt A

The transform of a product is generally different from the product of the transforms of the factors,
L[ ft)g(t)] = F(s)G(s) in general
To see this take f (t) =e'and g(t) =1. Then f (t)g(t) =e', L[f(t)g(t)]=1/(s-1), but L[f(t)]=1/(s-1) and

£[1]=1s give L[f(O)]L[aM®)]=1(s"-s).

From the definition, it follows almost immediately that convolution has the properties

fxg=g=f (commutative law) (3.1.52)
fx(g,+0,)="F=*g,+f=g, (distributive law) (3.1.53)
(fxg)*xv="f=*(g=*v) (associative law) (3.1.54)
f*x0=0*f =0 (3.1.55)

similar to those of multiplication of numbers. Unusual are the following two properties.
f 1% f in general. For instance,

1= ['r1dr =t
t* —JOT' T_E;tt .
(f = f)(t) >0 may not hold. For instance,

sint *sint :j;sin rsin(t-7)dr =%J;{—cost+cos(21—t)}dr 5

S\ 6 s 101¢
t
_1L —rcost+£sin(21—t) =1(—tcost+sint) i \/
2 2 2

0

Example-8
Let£[ f(t)]=

Fig.3.1.9 sint=*sint

.Find f(t).
s(s—a

Solution
From Table 3.1.2 we know that

o(£1|: 1 j|:eat’ xl[l:|:1
S—a S

Using Eq.(3.1.51), we get the answer
at t at 1 at
e x1=[ e 1dr ==(e" -1) (3.1.56)
0 a
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3.1.3 Partial Fractions for the Inverse Laplace Transform Im
The inverse Laplace transformation is defined as i
jct+io
f(t)=2L[F(s)]= _I F(s)eds (c>0o) (3.1.57) $® o plane

The integrand F(s)e™ is integrated along a straight line C, that is parallel to the o " Re
imaginary axis on the complex plane as shown in Fig.3.1.10 (a). The line integral 5@
is extended to the counterclockwise integration around the simple closed path C o g
that consists of the straight line C; and the semicircle C, of radius R — o so that

all singularitiess,,---,s, lie inside C as shown in Fig.3.1.10 (b). The integral over (a)
the simple closed path is evaluated by using the residues. Im
<JS F(s)es‘ds=j F(s)es‘ds+J F(s)eds
[¢ s plane
(3.1.58)
= 2mz Res[F(s)es‘}
k=1 =% Re
If |F(s)| approaches 0 as | s |approaches infinity, then
jc F(s)eYds=0 (R—o,t>0) (3.1.59)
Hence, Eq.(3.1.57) is evaluated as (b)
_ 1 St N o Fig.3.1.10 Path of integration for
F(t)= 27i J.c1 F(s)e"ds = kz:;ligks[F(s)e ] (3.1.60) the inverse Laplace transformation
Example-9 (s ands, are singularities)
s+a .
LetF(s) = . Find f (t).
®) s(s+1)? ®

Solution
The function F (s)e™ has a simple pole at s = 0and a pole of second order ats = —1. These residues are

st

e’ =a

. s+a
Res| F(s)e™ |=limsF(s)e™ =lim
s=0 [ ( ) :| 50 ( ) 550 (S +1)

d(s+a a s+a
Res F(s)e® |=—— s+1)2F(s)e® _Im e* |=lim e+ ——te |=—ae ' +(1l-a)te™
[() J (2- 1)' 1ds{( V'FE) } ds( S j Hl(sz s j 1-a)
Hence, we obtain f(t) =« *[F(s)]=a+(1-a)te ' —ae™ (3.1.61)

The inverse of a linear transformation is linear. We can use partial fraction reduction to obtain the inverse
Laplace transform. Let F (s) be the following form such as a quotient of two polynomials,
B(s) b,s"+b, ,s""+---+bs+b,
F(s)= = .
A(s) s"+a, 8"+ +as+a,
where A(s) and B(s) have real coefficients and no common factors.
(1) If the roots of A(s)=0,4,4,,---, 4,, are different, then

(n>m) (3.1.62)

e _ _ B(S) ,  _B(A)

F(s)_s—ﬂi+s—/&z+ =) .21:5— . C Ilm(s ) ——= AG ) rec AL (3.1.63)

Its inverse Laplace transform is

ft)=L[F(s)]= Zn:cie’“‘ (3.1.64)

(2) If A(s) = 0has multiple roo{s, that is, 4, is a root of orderk and 4, ,,---, A, are unequal roots, then
Cu Ci s . Cy \ G
A e .Zk;ls PV AN (5169
1 i d! _,\« B(s) B(s)
o= (k—.)-s% ds*” '{( A) A(s)} G=me-A e A(s) (3.0.66)

Its inverse Laplace transform is

f(t)y=<L7[F(s)]= Zk:(l C“l)lt' et 4 Z ce™ (3.1.67)
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(3) If A(s) = 0 has complex conjugate simple roots, 4, =a+ifand 4, =a—if («a, S are real numbers), then the
corresponding partial fraction is
As+B As+B  A(s—a)+(aA+B)

— = 3.1.68
(s-A)s+4) (s-a)'+p° (s-a)* +p° ( )

Its inverse Laplace transform is
e“t(Acosﬁt+aA+Bsinﬂt] (3.1.69)

aA+B {(s—a)’ +B*| B(s)

where A is the imaginary part and the real part of 1 lim

piAG)
Example-10
F(s)=to o S*3 _Y3, 43 FO) =L F(9)]=—se +oe
s°-=9 (s+3)(s—-3) s+3 s-3 3 3
Example-11
s+a a 1l-a -a
F(s) = =—+ + ft)=<L"'[F(s)|=a+(1-a)te" —ae™
) s(s+1D?* s (s+1)® s+1 ® [FEO)] (t-2)
It is identical with the result of Example-9.
Example-12
S S (5—2)+2 1 2t :
F(s)=— = —= g f(t) =L 7[F(s)]=e (cos2t+sin 2t)
$°—4s+8 (s-2)°+4 (s—-2)°+4
Example-13
2
F(s) =20 _in(s? +16)-2Ins
s
Its derivative is
2s 2
F'(s) = -
©) s°+16 s

Taking the inverse Laplace transform and using the equation of the differentiation of the transform, we obtain
L7F'(s)]=2cos4t—2=—-tf(t)
Hence the inverse Laplace transform of F(s) is

LF(s)]=f(t) =%(—cos4t+1) (lim f (t) = lim8sin 4t =0)

3.1.4 The Laplace Transforms of the Periodic Functions
Let f (t) be a piecewise continuous function that is defined for all positivet and has the period p (> 0) , that is,

f(t+np)=f(t) n=0,+#1,+2,--- forallt>0 (3.1.70)
The Laplace transform of this function is

F(s)=<£[f(t)]= 1_2% jo" f(t)e™dt (s>0) (3.1.71)

" We can write the integral from zero to infinity as the series of integrals over successive periods.
L[tO]=[ fOetdt=["e f)dt+ [ e fRdt+ [ e Bdt+-
0 0 p 2p
Replacing the variables in each integral,
P —st P —s(c+ P —s(z+2
:f[f(t)]:jO f(t)e o|t+j0 e P f (r 4 p)o|z+jO e 2P f (r 4 2p)d 7+
Since f (t) is a periodic function of period p, we thus obtain

LIf(1)]= jo" f(t)edt+ jo" e P £ (t)dt + jo" e 2) f (t)dlt + - -

= [1+ e +e 2P 4. J J'Op f(t)edt

The series in brackets [...] is a geometric series whose sum is1/(1—e ™). Hence, we obtain

i[f(t)]:ﬁjopf(t)e‘s‘dt (s>0)
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Example-14 f(1)
Find the Laplace transforms of the piecewise continuous periodic
function of the period p=2 shown in Fig.3.1.11.

t ifo<t<l '
f)y=4 - °0° (3.1.72) 0 ' ' v
0 ifl<t<? o 1 2 3 4,

Solution

Fig.3.1.11 Example of periodic function
Since the period p = 2, we obtain by integration and simplification g P P

_ 1 Po-st _ 1 1o-st
F(s)—mjoe f(t)dt—mjoe tdt

1 -5 _ _a=S _cpS
_ 1_2 _le_St +1I1e‘s‘dt _ 1_2 _le_s_e : 1 :12e _sze
1-e° s , S 1-e*| s s s°(1-e)

3.1.5 Initial Value Theorem and Final VValue Theorem

(3.1.73)

Initial value theorem
rIir(p f(t) =limsF(s) (3.1.74)
Final value theorem
If all poles of sF(s) are in the left half-plane,
tIim ft)= Iirrg sF(s) (3.1.75)

* The Laplace transform of the derivative of a function is expressed as follows
j: f/(t)e dt = sF(s) - f (0) (3.1.76)
The left side of Eq.(3.1.76) approaches zero as s approaches infinity. Hence, 0=IlimsF(s)— f(0). This

implies Eq.(3.1.74).
If F(s) converges fors>0, the left side of Eq.(3.1.76) approaches !im f(t)— f(0) as s approaches O.

Hence, !im f)—-f(0)= IirTg sF(s)— f(0) . This implies Eq.(3.1.75).

The final value theorem is useful because it gives the long-term behavior without having to perform partial
fraction decompositions or other difficult algebra. If a function has poles in the right-hand plane or on the
imaginary axis, the behavior of this formula is undefined.

Example-15
LetF(s)=— =5 Find limf(t).
s(s+1)(s+2) o
Solution
By using the final value theorem, we get
lim £ (t) = lim sF (s) = lim—>3 =5 _jim_4=S __
toe -0 20 5(S+1)(S+2) 20 (s+1)(s+2)
To check it we use the partial fraction expansion
Rl 2.3, 3 (3.1.78)
s(s+D(s+2) s s+1 s+2
Its inverse Laplace transform is
f(t)=<L"[F(s)]=2-5¢e" +3e™ (3.1.79)

Hence, !im f(t)y=2.

(3.1.77)

Example-16: Incorrect use of the final value theorem

1 . .
Let F(s) _m. Find !l_)rg f(t).



Solution
There exists an unstable pole s = 2 . The partial fraction expansion gives

F(s) = 1 _ Y5 15
(s—-2)(s+3) s—-2 s+3
Inverse Laplace transformation of F(s) gives

f)=L[F(s)]= %ez‘ —%e‘m
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(3.1.80)

(3.1.81)

This immediately leads the unbounded final value. But incorrect use of the final value theorem gives the wrong

final value as follows.
S

limsF(s)=lim—— =0 (3.1.82)
s—0 s—0 (3_2)(5+3)
Problem-1
Find the Laplace transforms of the following functions. (@ , & and k are constants)
(1) t*+3t-2 (2) e (3) 2te” (4) t%e?
(5) cos(wt+8) (6) sin®3t (7) e cos4t (8) tcos2t
(9) t*cos3t (10) te'sin 3t (11) t™¥? (12)e'u(t-2)
(13) (14) (15) Staircase function
A () A @) b £ (1) T
k e B :_:
| | k — :
0 | i } l > -
0 1 12 13 4 :
—k (I 0 } } } > ! } } »
0 1 3 0 1 2 3 ¢
Problem-2
Find the Laplace transforms of the following functions, which are assumed to be periodic of the period
p=2.
1 ft)=t-1 (0<t<?2) (2 f@t)=(t-12)°> (0<t<?2)
@) fM)=|t-1] (0<t<2) (4) ft)=e"" (0<t<2)
1 ifO<t<1 t ifOo<t<l
5) f(t)= 6) f(t)=
®) 1O {0 if 1<t<2 © 1O {1 if l<t<2
0 ifO<t<l/2 t ifo<t<l
7 ft)= 8) f(t)=
SRS {1 if 1/2<t<2 ® 1O {Z—t if l<t<2
sinzt if 0<t<1
9) f(t)= 10) f(t) =|sinxt] (0O<x<?2
©) (){0 1ot (10) (1) =[sint| (0<x<2)
Problem-3
Find the inverse Laplace transforms of the following functions.
2 -1 s+3 S+3
1) — 2 3 4
@ s—4 @) (s—3)? ®) s’ —4 ) s*+9
25+1 s—1 s-2 s+1
5) —— 6) ———— 7N ———— 8) ———
©) s°+4s-5 ©) s°—4s+5 () (s> +16)? ®) s°(s? +4)
s-3 s-2 s°+25 s°—4
9) —————— 10) In— 11) In 12) In
®) (s—1)?(s—4)° (10) s+1 () s’ (12) s
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3.2 Systems of Linear Differential Equations

The Laplace transform method solves differential equation and corresponding initial and boundary value
problems.

3.2.1 Initial Value Problem of Systems of Linear Differential Equations with Constant Coefficients

y'(t) = Ay(t) +r(t) (3.2.1)
Initial value: y(0) =y, (3.2.2)
where y(t) =[y,t) vy,t) - y.®OI,r®)=[rt) rt) - r ()] and Aisannxn real matrix.

We transform Eq.(3.2.1), writingY (s) = £[y(t)| =[£[v,()] £[y,®)] - x[yn(t)]]Tand R(s)=<[r@®)]
=[£[r®] £[nO] - Lol

This gives
SY (s) = Yo = AY (S) + R(s) (3.2.3) Table 3.2.1 Properties of matrix
CollectingY (s) -terms, we have exponential ™
Y(s)=(sl -A)" R 324
YEO=CI-AT Y EREE (3.24) (1) 1ft=0 then ™ =1
where | is the nx n unit matrix (identity matrix). de™)
Taking the inverse Laplace transform, we obtain ) G Ae™ =eMA
y©) = £ Y ()] =L 51 - A {y, +RO)} | (3.2.5) (3) e’ = At
Using the matrix exponential defined in Sec.1.2, At ; .
1 1 (4) e™is nonsingular
eM =1+ At+§A2t2 +---+mA"tk o (3.2.6) (5) (M) t=e"
the solution of the initial value problem is expressed as (6) e™ =L (sl -A)"]
y(t) —gh Yo +J‘;eA(t—z)r(T)dT (3_2]) :$1|:adj(5| - A):|
Hence there is a relation st —Al
N =L (sl-A)"] (3.2.8)

Advantages of the Laplace transform method

(1) Solving a nonhomogeneous ordinary differential equation does not require first solving the homogeneous
ordinary differential equation.

(2) Initial values are automatically taken care of.

(3) Complicated inputr(t) can be handled very efficiently by using the unit step functionu(t —a) and Dirac delta

functiono(t—a).

Example-1
Using Laplace transforms, solve the following initial value problem, which is the same as Eq.(1.2.42) in
Sec.1.2. 1 -2 1 2
"= Ay+r(t) = t, y(0)=y,= 329
y'=Ay+r(t) [3 —‘JHM y(0) =y, M (32.9)
Solution
By taking the Laplace transform of Eq.(3.2.9), we obtain
SY (s)—y, =AY (S)+ R(s) (3.2.10)
Solving algebraically, we get ) 1 2% +4s+1
= Ly TSI
_ 1 s+4 -2 52 s(s+1)(s+2)
Y(s)= (sl =A)" {y, +R(s) =—{ } = 3.2.11
o } (s+D(6+2)[ 3 s-1]j, 2| |2s°+4s’+25+1 ( )
s? s2(s+1)(s+2)
Using partial fractions and taking the inverse Laplace transform, we obtain the solution
Ll+1/_22+£ e"+%e’z‘+%
_ - s+1 s+ S
yt) =LY (s)]=£L" = (3.2.12)
i+£+%+1/—22 ety Ly
s+1 s+2 s s 4 4 2

This is identical with Eq.(1.2.58).
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Example-2
Using the Laplace transforms, solve the following initial value problem, which is similar to Eq.(1.2.67) in
Sec.1.2.

’ O l le

y'=Ay= {_25 _6} y, Y0 =y, = |:yzo:| (3.2.13)

Solution
By taking the Laplace transform of Eq.(3.2.13), we obtain

sY(s)—y, =AY (S) (3.2.14)

Solving algebraically, we get
s+6 1
Y(s)=(sl -A) 'y, = Mﬁ[ o5 s} Yo (3.2.15)

Taking the inverse Laplace transform, we obtain the solution
y() =L (s = A) "yl

3 1
543 . Z><4 ZX4
g (s+3)?+4% (s+3)* +4? (s+3)% +47 {ym (3.2.16)
-25 3 Y20 -
4 s¢3 4"t
(s+3)? +4? (s+3)°+4> (s+3)°+4° | |
e ¥ (cos 4t +3sin 4t) Lessinat
_ 4 4 {y10:|
Y20

—? e ¥ sin4t e ¥ (cos 4t —%sin 4t)

This is corresponding to Eq.(1.2.76) with ¢ =Y, €, = (3Yyo + Yx)/4-

Problem-1
Using the Laplace transforms, solve the following initial value problem.

y'=Ay, y0)=y,

5 4 1 0 1 1 1 1 1
ot f]  mall ] et s

1 4 1 0 1 0 1
4 A= {—2 —3] Yo :[0} () A=l 0 0 11y=0
-10 -17 -8 0

Problem-2
The following initial value problems are the same problems in Sec.1.2. Solve them by using the Laplace
transforms and confirm the answers.

y'=Ay, y0)=y,

(7 5 1 -1 2 1 (1 5 5
I P ISP R P ]

1 -2 0 -2 0 1 010 L
o afs ol @ a2 o] @ ade s sl
- 0 -2 -6 0

(1) A=12 -1 3|, ¥ =| Y 8) A=|-4 -8 —41|,¥,=| Yy (9 A=|-3 -6
2 1 -5 Yao0 2 3 0 Y30 1 1

O =
0 1 -3 Yio 2 6 4 Yio 2 6 4 Yio

-2 v Yo =| Yo

-2 Yao



